scholarly journals Isolation and identification of peste des petits ruminants virus from goats in Egyptian governorates

2021 ◽  
Vol 14 (4) ◽  
pp. 926-932
Author(s):  
Sahar Ahmed ◽  
Wafaa Abd El Wahab Hosny ◽  
Mervat Mahmoud ◽  
Mohammed Abd El-Fatah Mahmoud

Background and Aim: The peste des petits ruminants (PPR) is a highly contagious disease of small ruminants which negatively affects animal production and the socioeconomic status of farmers. Peste des petits ruminants virus (PPRV) encodes eight proteins, with the viral fusion protein (F) playing a role in virus virulence and stimulating an effective protective immune response. This study aimed to isolate and complete the identification of PPRV circulating in goats in different Egyptian governorates and perform molecular characterization of the PPRV F gene. Materials and Methods: Samples were collected from unvaccinated animals with clinical signs suggestive of PPR. A total of 256 sera were tested for the detection of PPRV antibodies using a competitive enzyme-linked immunosorbent assay (c-ELISA) kit, while 214 samples of blood buffy coat preparation, animal swabs (nasal, ocular, and saliva), and fecal and tissue samples were tested for the detection of the PPRV antigen using an antigen-capture ELISA kit. Molecular diagnosis, gene cloning, blast analysis, and phylogenetic analysis were performed for the molecular characterization of PPRV. Results: The seroprevalence results of PPRV antibodies in the tested sera showed a total of 67.9% positive samples. The rates of PPR antigen recorded by the antigen-capture ELISA in the swabs (nasal and ocular) and tissue samples were 44.3%, 46.8%, and 43.5%, respectively, with saliva swabs having the highest rate of PPRV positivity (76.4%) and fecal samples having the lowest (33.3%). Molecular characterization of the PPRV Vero cell culture revealed that the circulating PPRV strain belongs to the IV lineage. Blast analysis of the PPRV F gene showed 96.7% identity with the PPRV strain Egypt-2014 fusion protein (F) gene, KT006589.1, differing by 43 single-nucleotide polymorphisms. Conclusion: The results of this study indicate that the emerging PPRV belongs to the IV lineage among small ruminant animals. The findings also indicate the need for an innovative strategy to control and eliminate this disease based on a regularly administered and effective vaccine, a test to distinguish between infected and vaccinated animals, and the need for further study on the protein structure and PPRV F gene expression, which should help us to understand the molecular evolution of the virus and control and eliminate PPR disease.

2011 ◽  
Vol 157 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Pam D. Luka ◽  
Joseph Erume ◽  
Frank N. Mwiine ◽  
Chrisostom Ayebazibwe

2018 ◽  
Vol 66 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Eda Altan ◽  
Satya Parida ◽  
Mana Mahapatra ◽  
Nuri Turan ◽  
Huseyin Yilmaz

Author(s):  
Smita Bordoloi ◽  
Anju Nayak ◽  
A.P. Singh ◽  
R.V. Singh ◽  
Kajal Jadav ◽  
...  

Background: Newcastle disease (ND) in spite of the availability of vaccines remains a constant threat to poultry producers worldwide. It is prevalent in Indian subcontinent and leads to economic losses. The present study was aimed with isolate and identify virulent Newcastle disease virus (NDV) in layer poultry from field outbreaks.Methods: Total 47 samples consisting of nasal (05), oropharyngeal (13) and cloacal swabs (11) and tissue samples consisting of trachea (07), lungs (06), larynx (05) were collected from layer birds. For isolation of NDV swab and tissue samples were inoculated in 9-11 days old embryonated eggs via allantoic cavity route. After preparing the viral inoculum, 47 suspected samples (29 swab and 18 tissue samples) were inoculated in 141 embryonated eggs to isolate the virus.Result: Out of 47 samples 10 (21.27%) samples were positive for HA activity. All the 10 isolates showing HA activity subjected to Reverse-Transcriptase PCR of F gene and 6 were found positive in RT-PCR for F1 gene. The PCR amplified product showed amplicon at 356 bp and 254 bp positive for F1 and F2 gene, respectively. On basis of F gene, 06 (50%) isolates were considered as virulent Newcastle Disease Virus. One isolate sequence was submitted at NCBI with accession MT890653 On phylogenetic analysis MT890653 designated as Class II/ genotype II/ virulent strain and had the motif 112R-R-R-K-R-F117 at the cleavage site of the fusion protein.


2018 ◽  
Vol 169 ◽  
pp. 94-98 ◽  
Author(s):  
Mahmoud M. Elhaig ◽  
Abdelfattah Selim ◽  
Ahmad S. Mandour ◽  
Claudia Schulz ◽  
Bernd Hoffmann

2019 ◽  
Vol 71 ◽  
pp. 166-178 ◽  
Author(s):  
Somayeh Shatizadeh Malekshahi ◽  
Shaghayegh Razaghipour ◽  
Yazdan Samieipoor ◽  
Farhad B. Hashemi ◽  
Ali Akbar Rahbari Manesh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document