scholarly journals Dissolution testing as a quality control tool during scale-up of immediate release oral, solid dosage forms

1995 ◽  
Vol 2 (3) ◽  
pp. 3-8
Author(s):  
Glenn A. Van Buskirk
2012 ◽  
Vol 2 ◽  
pp. 1-8 ◽  
Author(s):  
Mubarak Nasser Al Ameri ◽  
Nanda Nayuni ◽  
K.G. Anil Kumar ◽  
David Perrett ◽  
Arthur Tucker ◽  
...  

2019 ◽  
Vol 64 (02) ◽  
pp. 27-34
Author(s):  
Emilija Janeva ◽  
Liljana Anastasova ◽  
Irena Slaveska Spirevska ◽  
Tatjana Rusevska ◽  
Tanja Bakovska Stoimenova ◽  
...  

Dissolution testing of generic immediate release solid dosage forms represents a valuable tool to obtain dissolution profiles and to establish the similarity/dissimilarity between tested dosage forms. In this study, the in vitro dissolution profiles of generic immediate-release moxifloxacin (MOX) film coated tablets and a referent pharmaceutical product were compared and evaluated. The dissolution behavior of the generic product was investigated in three different dissolution media (pH=1.2, 4.5 and 6.8). The amount of dissolved MOX was determined using validated UV spectrophotometric method. For comparison of the dissolution behavior, the similarity factor, f2, was used. The dissolution profile of the generic product showed a release of >85 % MOX in the time frame of 30 min, in all the tested dissolution media. The similarity factor, f2, calculated from the comparison of the dissolution profiles of the generic and the referent pharmaceutical product in pH=1.2 dissolution medium was 50, 58, thus the products were established as similar. Based on the results of our study, the dissolution similarity between the generic MOX immediate-release film coated tablet and the referent product could be successfully used as a part of the approach to ensure their in vivo bioequivalence. Keywords: moxifloxacin, immediate-release solid dosage forms, dissolution, in vitro similarity


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1583
Author(s):  
Sergio A. Sánchez-Guirales ◽  
Noelia Jurado ◽  
Aytug Kara ◽  
Aikaterini Lalatsa ◽  
Dolores R. Serrano

Fuse deposition modelling (FDM) has emerged as a novel technology for manufacturing 3D printed medicines. However, it is a two-step process requiring the fabrication of filaments using a hot melt extruder with suitable properties prior to printing taking place, which can be a rate-limiting step in its application into clinical practice. Direct powder extrusion can overcome the difficulties encountered with fabrication of pharmaceutical-quality filaments for FDM, allowing the manufacturing, in a single step, of 3D printed solid dosage forms. In this study, we demonstrate the manufacturing of small-weight (<100 mg) solid dosage forms with high drug loading (25%) that can be easily undertaken by healthcare professionals to treat hypertension. 3D printed nifedipine minitablets containing 20 mg were manufactured by direct powder extrusion combining 15% polyethylene glycol 4000 Da, 40% hydroxypropyl cellulose, 19% hydroxy propyl methyl cellulose acetate succinate, and 1% magnesium stearate. The fabricated 3D printed minitablets of small overall weight did not disintegrate during dissolution and allowed for controlled drug release over 24 h, based on erosion. This release profile of the printed minitablets is more suitable for hypertensive patients than immediate-release tablets that can lead to a marked burst effect, triggering hypotension. The small size of the minitablet allows it to fit inside of a 0-size capsule and be combined with other minitablets, of other API, for the treatment of complex diseases requiring polypharmacy within a single dosage form.


Sign in / Sign up

Export Citation Format

Share Document