scholarly journals Exact multiplicity of positive solutions for a class of semilinear equations on a ball

Author(s):  
Philip Korman
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongliang Gao ◽  
Jing Xu

AbstractIn this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation $$ \textstyle\begin{cases} - (\frac{u'}{\sqrt{1-u^{\prime \,2}}} )'=\lambda f(u), &x\in (-L,L), \\ u(-L)=0=u(L), \end{cases} $$ { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , where λ and L are positive parameters, $f\in C[0,\infty ) \cap C^{2}(0,\infty )$ f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) , and $f(u)>0$ f ( u ) > 0 for $0< u< L$ 0 < u < L . We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when f satisfies $f''(u)>0$ f ″ ( u ) > 0 and $uf'(u)\geq f(u)+\frac{1}{2}u^{2}f''(u)$ u f ′ ( u ) ≥ f ( u ) + 1 2 u 2 f ″ ( u ) for $0< u< L$ 0 < u < L . In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of λ. The arguments are based upon a detailed analysis of the time map.


2003 ◽  
Vol 3 (2) ◽  
Author(s):  
Philip Korman ◽  
Yi Li ◽  
Tiancheng Ouyang

AbstractWe revisit the question of exact multiplicity of positive solutions for a class of Dirichlet problems for cubic-like nonlinearities, which we studied in [6]. Instead of computing the direction of bifurcation as we did in [6], we use an indirect approach, and study the evolution of turning points. We give conditions under which the critical (turning) points continue on smooth curves, which allows us to reduce the problem to the easier case of f (0) = 0. We show that the smallest root of f (u) does not have to be restricted.


2020 ◽  
Vol 20 (4) ◽  
pp. 933-963
Author(s):  
Giovany M. Figueiredo ◽  
Uberlandio B. Severo ◽  
Gaetano Siciliano

AbstractIn this paper we prove an existence result of multiple positive solutions for the following quasilinear problem:\left\{\begin{aligned} \displaystyle-\Delta u-\Delta(u^{2})u&\displaystyle=|u|% ^{p-2}u&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{on }\partial% \Omega,\end{aligned}\right.where Ω is a smooth and bounded domain in {\mathbb{R}^{N},N\geq 3}. More specifically we prove that, for p near the critical exponent {22^{*}=4N/(N-2)}, the number of positive solutions is estimated below by topological invariants of the domain Ω: the Ljusternick–Schnirelmann category and the Poincaré polynomial. With respect to the case involving semilinear equations, many difficulties appear here and the classical procedure does not apply immediately. We obtain also en passant some new results concerning the critical case.


Sign in / Sign up

Export Citation Format

Share Document