scholarly journals Synthesis and Spectral Studies of 4,4′-(Hydrazine-1,2-diylidenedimethylylidene)-bis-(2- methoxyphenol) and Its Transition Metal Complexes with Promising Biological Activities

2020 ◽  
Vol 32 (7) ◽  
pp. 1768-1772
Author(s):  
Anita Rani ◽  
Manoj Kumar ◽  
Hardeep Singh Tuli ◽  
Zahoor Abbas ◽  
Vinit Prakash

The study describes the synthesis, characterization and biological activity of a novel Schiff base ligand and its transition metal complexes. The Schiff base ligand was obtained by a condensation reaction between 4-hydroxy-3-methoxybenzaldehyde (p-vanillin) and hydrazine hydrate using ethanol as solvent. A new series of Ni(II) and Fe(III) complexes were also derived by reaction of prepared Schiff base ligand with NiCl2 and FeCl3. Both the ligand and its metal complexes were characterized by solubility, melting point and elemental analysis. These compounds were further identified by analytical techniques, FTIR, NMR and mass spectrometry. The ligand and its transition metal complexes were also subjected to in vitro biological activities i.e. antimicrobial, antiangiogenic and DNA photo cleavage. For antimicrobial activity compounds were tested against two strains of bacteria and two strains of fungi. Different concentrations of prepared compounds were treated with fertilized chicken eggs and plasmid DNA to find out antiangiogenic and DNA photocleavage activity, respectively.

2019 ◽  
Vol 31 (10) ◽  
pp. 2331-2336 ◽  
Author(s):  
Manoj Kumar ◽  
Anita Rani ◽  
Hardeep Singh Tuli ◽  
Rajshree Khare ◽  
Vinit Parkash

This report describes the synthesis and exploration of novel Schiff base ligand in the form of a polymer (heptamer) which was prepared by reaction between 3,4-diacetyl-2,5-hexanedione and hydrazine hydrate in ethanol. On further reaction of Schiff base with transition metals ions (Co and Cu) leads to formation of its transition metal complexes. The structural identification of Schiff base ligand and its transition metal complexes were characterized by classical structural techniques like FT-IR, NMR and mass spectra. The free ligand and its transition metal complexes have been screened for in vitro biological activities against various strains of bacteria and fungi. The prepared Schiff base and its metal complexes were also screened for antiangiogenic activity. The results have shown the remarkable antimicrobial and antiangiogenic activities of the Schiff base and its metal complexes.


2020 ◽  
Vol 71 (1) ◽  
pp. 206-212 ◽  
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver ◽  
Gabriel Bratu ◽  
...  

Two step synthesis of Schiff base ligand and its transition metal complexes was done by condensation reaction. In first step, the drug and aldehyde in equimolar ratio were refluxed for one hour at pH 8-9 in order to get Schiff base ligand. In second step, ligand and metal salts were refluxed for 2 hour. The ligand and Cu(II), Ni(II), Co(II), Fe(II), Mn(II), Zn(II) complexes were characterized by using different instruments like FT-IR, 1H-NMR, 13C-NMR, Mass, Atomic absorption spectrometer, Elemental analyzer, UV-visible spectrophotometer, Evans balance, Conductivitymeter and Thermogravimeter. In vitro antibacterial, antifungal and anti-inflammatory activities were also studied. The synthesized ligand and transition metal complexes were tested against Escherichia coli, Enterobacter aerogenes, Staphylococcus aureus, Bacillus pumilus, Klebsiella oxytoca, Clostridium butyrium, Mucor and Aspergillus niger. These studies demonstrated the enhanced activity of metal complexes against reported bacterial and fungal strains when compared with free Schiff base ligand. The Cu(II) complex recognized as anti-inflammatory agent while the parent drug showed no activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Nagesh Gunvanthrao Yernale ◽  
Mruthyunjayaswamy Bennikallu Hire Mathada

A novel Schiff base ligandN-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide(L)obtained by the condensation ofN-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR,1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand(L)behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand(L)and its metal complexes have been screenedin vitrofor their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study thein vitrocytotoxicity properties for the ligand and its metal complexes againstArtemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Omoruyi G. Idemudia ◽  
Alexander P. Sadimenko ◽  
Anthony J. Afolayan ◽  
Eric C. Hosten

Two Schiff base ligands Ampp-Sn1and Bmpp-Sn2, afforded by a condensation reaction between sulfanilamide and the respective acylpyrazolone carbonyl precursors, their Mn(II), Co(II), Ni(II), and Cu(II) complexes prepared by the reaction of ligands and corresponding metal salts in aqueous solutions, were synthesized and then characterized by both analytical and spectroscopic methods, in a view to developing new improved bioactive materials with novel properties. On the basis of elemental analysis, spectroscopic and TGA results, transition metal complexes, with octahedral geometry having two molecules of the bidentate keto-imine ligand each, have been proposed. The single crystal structure of Bmpp-Sn according to X-ray crystallography showed a keto-imine tautomer type of Schiff base, having three intramolecular bonds, one short N2⋯H2⋯O3 hydrogen bond of 1.90 Å and two long C13⋯H13⋯O2 and C32⋯H32⋯O3 hydrogen bonds of 2.48 Å. A moderate to low biological activities have been exhibited by synthesized compounds when compared with standard antimicrobial agents on screening the synthesized compounds againstStaphylococcus aureus,Bacillus pumilus,Proteus vulgaris, andAeromonas hydrophilafor antibacterial activity and against free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) for antioxidant activity.


2014 ◽  
Vol 79 (4) ◽  
pp. 421-433 ◽  
Author(s):  
Abhay Srivastava ◽  
Netra Singh ◽  
Chandra Shriwastaw

A series of novel binuclear transition metal complexes was synthesized by reaction of a Schiff base ligand (1-Methyl-2-(2-oxo-1,2-dihydro-pyrimidin-4-ylimino)-propylideneamino-acetic acid) (LaH) derived from 4-amino-pyrimidine-2-one, diacetyl, glycine and corresponding chloride salt of Cu(II), Ni(II), Co(II) and Zn(II) metals in 1:1 (metal : ligand) molar ratio. The compounds were characterized by elemental analyses, molar conductance measurement, magnetic moment measurement and various spectral studies viz. IR, UV-visible, 1H-NMR, 13C-NMR, EPR and ESI-MS. Molar conductance measurement data revealed non-electrolytic nature of metal complexes. Electronic absorption spectral data, electronic paramagnetic resonance parameters and magnetic moment values revealed an octahedral geometry for binuclear metal complexes. Cyclic voltammetric study of Ni(II) complex shows a couple of one electron anodic responses near 0.70 V and 1.10 V. In vitro biological activity of Schiff base ligand and binuclear complexes has been checked against bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi) and fungi (Candida albicans and Candida parapsilosis) to assess their antibacterial and antifungal properties.


2017 ◽  
Vol 13 (9) ◽  
pp. 6513-6519
Author(s):  
Anil Kumar M R ◽  
Shanmukhappa S ◽  
Rangaswamy B E ◽  
Revanasiddappa M

Transition metal complexes of Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II) have been synthesized with the Schiff base ligand 5-Sub-N-(2-mercaptophenyl)salicylideneimine. Elemental analysis of these complexes suggest that these metal ions forms complexes of type ML(H2O)stoichiometry for Cu(II), Co(II), Ni(II), Zn(II), Cd(II) and Mn(II). The ligand behaves as tridentate and forms coordinate bonds through O, S and N atoms. Magnetic susceptibility, IR, UV – Visible, Mass and ESR spectral studies suggest that Cu(II), Ni(II) complexes posses square planar geometry, whereas Co(II), Zn(II), Cd(II) and Mn(II) complexes posses tetrahedral geometry. The complexes were tested for their antimicrobial activity against the bacterial strains Staphylococcus aureus and Bacillus subtilis.The Schiff base metal complexes evaluated for their antifungal activity against the fungi A. niger and C. oxysporum. The DNA cleavage studies of Schiff base complexes werestudied using Calf – Thymus DNA by agarose gel electrophoresis method.


2012 ◽  
Vol 9 (1) ◽  
pp. 389-400 ◽  
Author(s):  
B. Anupama ◽  
M. Padmaja ◽  
C. Gyana Kumari

A new series of transition metal complexes of Cu(II),Ni(II),Co(II), Zn(II) and VO(IV) have been synthesized from the Schiff base ligand (L) derived from 4-amino antipyrine and 5- bromo salicylaldehyde. The structural features of Schiff base and metal complexes were determined from their elemental analyses, thermogravimetric studies, magneticsusceptibility, molar conductivity, ESI-Mass, IR, UV-VIS,1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2type. The UV-VIS, magnetic susceptibility and ESR spectral data suggest an octahedral geometry around the central metal ion. Biological screening of the complexes reveals that the Schiff base transition metal complexes show significant activity against microorganisms. Binding of Co(II) complex with calf thymus DNA (CT DNA) was studied by spectral methods.


Sign in / Sign up

Export Citation Format

Share Document