Stress Concentration Factor Measurement of Tensile Plate with Circular and Elliptical Hole by Digital Hybrid Photoelastic Experiment

Author(s):  
Choon Tae Lee ◽  
Myung Soo Kim ◽  
Tae Hyun Baek
Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 422 ◽  
Author(s):  
Wenshuai Wang ◽  
Hongting Yuan ◽  
Xing Li ◽  
Pengpeng Shi

Functionally graded material (FGM) can optimize the mechanical properties of composites by designing the spatial variation of material properties. In this paper, the stress distribution of functionally graded panel with a central elliptical hole under uniaxial tensile load is analyzed. Based on the inhomogeneity variation and three different gradient directions, the effects of the inhomogeneity on the stress concentration factor and damage factor are discussed. The study results show that when Young’s modulus increases with the distance from the hole, the stress concentration factor decreases compared with that of homogeneous material, and the optimal design of r-FGM is better than that of x-FGM and y-FGM when the tensile load. In addition, when the associated variation of ultimate stress is considered, the choice of scheme to reduce the failure index is related to the strength-modulus exponent ratio. When the strength-modulus exponent ratio is small, the failure index changes with the index of power-law, which means there is an optimal FGM design. But when the strength-modulus exponent ratio is large, the optimal design modulus design is to select a uniform material that maximizes the modulus at each point. These research results have a certain reference value for further in-depth understanding of the inhomogeneous design for FGM.


Author(s):  
Bogdan S. Wasiluk ◽  
Douglas A. Scarth

Procedures to evaluate volumetric bearing pad fretting flaws for crack initiation are in the Canadian Standard N285.8 for in-service evaluation of CANDU® pressure tubes. The crack initiation evaluation procedures use equations for calculating the elastic stress concentration factors. Newly developed engineering procedure for calculation of the elastic stress concentration factor for bearing pad fretting flaws is presented. The procedure is based on adapting a theoretical equation for the elastic stress concentration factor for an elliptical hole to the geometry of a bearing pad fretting flaw, and fitting the equation to the results from elastic finite element stress analyses. Non-dimensional flaw parameters a/w, a/c and a/ρ were used to characterize the elastic stress concentration factor, where w is wall thickness of a pressure tube, a is depth, c is half axial length, and ρ is root radius of the bearing pad fretting flaw. The engineering equations for 3-D round and flat bottom bearing pad fretting flaws were examined by calculation of the elastic stress concentration factor for each case in the matrix of source finite element cases. For the round bottom bearing pad fretting flaw, the fitted equation for the elastic stress concentration factor agrees with the finite element results within ±3.7% over the valid range of flaw geometries. For the flat bottom bearing pad fretting flaw, the fitted equation agrees with the finite element results within ±4.0% over the valid range of flaw geometries. The equations for the elastic stress concentration factor have been verified over the valid range of flaw geometries to ensure accurate results with no anomalous behavior. This included comparison against results from independent finite element calculations.


2014 ◽  
Vol 556-562 ◽  
pp. 742-746
Author(s):  
Yusuf Olatunbosun Tafa ◽  
Gang Zhao ◽  
Wei Wang

Experimental, analytical and finite element techniques are commonly known methods used in determining highly localized stress occurring in the body under loading as a result of geometric discontinuities. In this study, we use NURBS-based isogeometric analysis (IGA) to investigate the stress concentration factor (SCF) on three-dimensional geometry with discontinuity feature. The results show that IGA technique is in good agreement with analytical values, thus providing a more effective realistic way of determining SCF.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110264
Author(s):  
Zhang Ying ◽  
Lian Zhanghua ◽  
Gao Anqi ◽  
Yang Kun

The thread connection’s root fillet radius of 0.038″ size is the greatest weakness of the API NC type joints and thread. During the slimehole drilling, especially in the deep and ultra-deep gas well, its stress concentration factor and notch sensitivity factor are very high A novel thread connection design (TM) of a drilling tool is proposed to decrease the fatigue failure of the slimehole drilling tool in the deep and the ultra-deep gas well in the Tarim oilfield China. The novelty in the TM thread structure is, reducing the threads per inch, extending the distance from the last engaged thread to the external shoulder of the pin and adding three threads to the conventional connection. The novel thread connection will improve the slimehole drilling tool’s anti-fatigue life due to its improved elasticity and rigidity. Furthermore, the TM can transfer the maximum stress at the connection root to the loaded surface, which can effectively lower the fatigue notch’s sensitivity coefficient. In this paper, the finite element method (FEM) is applied to carry out the detailed comparative analysis of the TM with existing thread connection NC38, TX60 and TH90. The TM has the lowest stress concentration factor and fatigue notch sensitivity coefficient, so its anti-fatigue life is the highest. In addition, TM is manufactured and is tested at Tarim oilfield in China.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Changqing Miao ◽  
Yintao Wei ◽  
Xiangqiao Yan

A numerical approach for the stress concentration of periodic collinear holes in an infinite plate in tension is presented. It involves the fictitious stress method and a generalization of Bueckner's principle. Numerical examples are concluded to show that the numerical approach is very efficient and accurate for analyzing the stress concentration of periodic collinear holes in an infinite plate in tension. The stress concentration of periodic collinear square holes in an infinite plate in tension is studied in detail by using the numerical approach. The calculated stress concentration factor is proven to be accurate.


Sign in / Sign up

Export Citation Format

Share Document