Experimental Study on Cooling Performance Characteristics of Coolant-sourced Heat Pump System with Triple Fluids Heat Exchanger for Fuel Cell Electric Vehicle

Author(s):  
Hoseong Lee ◽  
Jongphil Won ◽  
Chungwon Cho ◽  
Taekkyu Lim ◽  
Hanbyeol Jeon ◽  
...  
Author(s):  
Hee Jeong Kang ◽  
Zhen Huan Wang ◽  
Jun Son ◽  
Sun-Joon Byun ◽  
Young-Chul Kwon

Developing high performance HVAC system using natural refrigerants including carbon dioxide (CO2) has been important in respect of environmental preservation and associated technologies. Thus studies to optimize the HVAC (heating ventilation air conditioner) system using natural refrigerants through clarifying the cycle performance characteristics are necessary. The CO2 heat pump system using air and water sources was consisted to examine its performance characteristics, and by varying conditions of several factors that affect or characterize the system performance like the amount of refrigerant charge, EEV (electronic expansion valve) opening, and internal heat exchanger under cooling mode. The performance characteristics of CO2 heat pump system were tested by using an air enthalpy calorimeter. In the case of the CO2 heat pump system without internal heat exchanger, the opening of #3 EEV and #4 EEV was 60% and refrigerant charge amount was 5,600g. However, in the case of that with internal heat exchanger, the best performance was obtained when the opening of #2 EEV is 20%. From the present studies, it was observed that the performance variation and operational characteristics of the CO2 heat pump system were affected by design factors like refrigerant charge amount, EEV opening, and internal heat exchanger and thereby, the configuration on an optimal operation conditions of the system was enabled.


2021 ◽  
Vol 183 ◽  
pp. 116191
Author(s):  
Dong Junqi ◽  
Wang Yibiao ◽  
Jia Shiwei ◽  
Zhang Xianhui ◽  
Huang Linjie

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Sign in / Sign up

Export Citation Format

Share Document