Investigation on the performance enhancement of electric vehicle heat pump system with air-to-air regenerative heat exchanger in cold condition

2022 ◽  
Vol 50 ◽  
pp. 101791
Author(s):  
Lee Sangwook ◽  
Chung Yoong ◽  
Jeong Yeonwoo ◽  
Kim Min Soo
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


2017 ◽  
Vol 105 ◽  
pp. 5085-5090 ◽  
Author(s):  
Xiaoqiang Zhang ◽  
Qingfeng Xue ◽  
Huiming Zou ◽  
Jixuan Liu ◽  
Changqing Tian ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1762 ◽  
Author(s):  
Zhe Wang ◽  
Fenghui Han ◽  
Yulong Ji ◽  
Wenhua Li

A marine seawater source heat pump is based on the relatively stable temperature of seawater, and uses it as the system’s cold and heat source to provide the ship with the necessary cold and heat energy. This technology is one of the important solutions to reduce ship energy consumption. Therefore, in this paper, the heat exchanger in the CO2 heat pump system with graphene nano-fluid refrigerant is experimentally studied, and the influence of related factors on its heat transfer enhancement performance is analyzed. First, the paper describes the transformation of the heat pump system experimental bench, the preparation of six different mass concentrations (0~1 wt.%) of graphene nanofluid and its thermophysical properties. Secondly, this paper defines graphene nanofluids as beneficiary fluids, the heat exchanger gains cold fluid heat exergy increase, and the consumption of hot fluid heat is heat exergy decrease. Based on the heat transfer efficiency and exergy efficiency of the heat exchanger, an exergy transfer model was established for a seawater source of tube heat exchanger. Finally, the article carried out a test of enhanced heat transfer of heat exchangers with different concentrations of graphene nanofluid refrigerants under simulated seawater constant temperature conditions and analyzed the test results using energy and an exergy transfer model. The results show that the enhanced heat transfer effect brought by the low concentration (0~0.1 wt.%) of graphene nanofluid is greater than the effect of its viscosity on the performance and has a good exergy transfer effectiveness. When the concentration of graphene nanofluid is too high, the resistance caused by the increase in viscosity will exceed the enhanced heat transfer gain brought by the nanofluid, which results in a significant decrease in the exergy transfer effectiveness.


2019 ◽  
Vol 282 ◽  
pp. 02027
Author(s):  
Hauke Hirsch ◽  
Hans Petzold ◽  
John Grunewald

We conducted numerical simulations of a heat pump system connected to a horizontal ground heat exchanger (HGHX), using a coupling of the hygro-thermal simulation software DELPHIN with Modelica. The aim was to study the influence of different HGHX sizes and assemblies as well as the impact of passive cooling on the systems efficiency. We found that the required ground area could be reduced by up to 70 % compared to the recommendation of German standard when the pipes are placed in multiple layers. Passive cooling is possible but has a negligible effect on the systems efficiency.


Sign in / Sign up

Export Citation Format

Share Document