Infrared and Visible Image Fusion Method Based On Three Stages of Discrete Wavelet Transform

2016 ◽  
Vol 9 (5) ◽  
pp. 407-418 ◽  
Author(s):  
Lingchao Zhan ◽  
Yi Zhuang
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yifeng Niu ◽  
Shengtao Xu ◽  
Lizhen Wu ◽  
Weidong Hu

Infrared and visible image fusion is an important precondition of realizing target perception for unmanned aerial vehicles (UAVs), then UAV can perform various given missions. Information of texture and color in visible images are abundant, while target information in infrared images is more outstanding. The conventional fusion methods are mostly based on region segmentation; as a result, the fused image for target recognition could not be actually acquired. In this paper, a novel fusion method of airborne infrared and visible image based on target region segmentation and discrete wavelet transform (DWT) is proposed, which can gain more target information and preserve more background information. The fusion experiments are done on condition that the target is unmoving and observable both in visible and infrared images, targets are moving and observable both in visible and infrared images, and the target is observable only in an infrared image. Experimental results show that the proposed method can generate better fused image for airborne target perception.


2019 ◽  
Vol 64 (2) ◽  
pp. 211-220
Author(s):  
Sumanth Kumar Panguluri ◽  
Laavanya Mohan

Nowadays the result of infrared and visible image fusion has been utilized in significant applications like military, surveillance, remote sensing and medical imaging applications. Discrete wavelet transform based image fusion using unsharp masking is presented. DWT is used for decomposing input images (infrared, visible). Approximation and detailed coefficients are generated. For improving contrast unsharp masking has been applied on approximation coefficients. Then for merging approximation coefficients produced after unsharp masking average fusion rule is used. The rule that is used for merging detailed coefficients is max fusion rule. Finally, IDWT is used for generating a fused image. The result produced using the proposed fusion method is providing good contrast and also giving better performance results in reference to mean, entropy and standard deviation when compared with existing techniques.


2014 ◽  
Vol 14 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Yong Yang ◽  
Shuying Huang ◽  
Junfeng Gao ◽  
Zhongsheng Qian

Abstract In this paper, by considering the main objective of multi-focus image fusion and the physical meaning of wavelet coefficients, a discrete wavelet transform (DWT) based fusion technique with a novel coefficients selection algorithm is presented. After the source images are decomposed by DWT, two different window-based fusion rules are separately employed to combine the low frequency and high frequency coefficients. In the method, the coefficients in the low frequency domain with maximum sharpness focus measure are selected as coefficients of the fused image, and a maximum neighboring energy based fusion scheme is proposed to select high frequency sub-bands coefficients. In order to guarantee the homogeneity of the resultant fused image, a consistency verification procedure is applied to the combined coefficients. The performance assessment of the proposed method was conducted in both synthetic and real multi-focus images. Experimental results demonstrate that the proposed method can achieve better visual quality and objective evaluation indexes than several existing fusion methods, thus being an effective multi-focus image fusion method.


Sign in / Sign up

Export Citation Format

Share Document