Device-Free Multiple People Daily Activity Recognition Using the Channel State Information Of Wi-Fi Signals

2016 ◽  
Vol 10 (9) ◽  
pp. 103-112
Author(s):  
Mohammed Abdulaziz Aide Al-qaness ◽  
Fangmin Li
Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3329 ◽  
Author(s):  
Mohammed A. A. Al-qaness ◽  
Mohamed Abd Elaziz ◽  
Sunghwan Kim ◽  
Ahmed A. Ewees ◽  
Aaqif Afzaal Abbasi ◽  
...  

Human motion detection and activity recognition are becoming vital for the applications in smart homes. Traditional Human Activity Recognition (HAR) mechanisms use special devices to track human motions, such as cameras (vision-based) and various types of sensors (sensor-based). These mechanisms are applied in different applications, such as home security, Human–Computer Interaction (HCI), gaming, and healthcare. However, traditional HAR methods require heavy installation, and can only work under strict conditions. Recently, wireless signals have been utilized to track human motion and HAR in indoor environments. The motion of an object in the test environment causes fluctuations and changes in the Wi-Fi signal reflections at the receiver, which result in variations in received signals. These fluctuations can be used to track object (i.e., a human) motion in indoor environments. This phenomenon can be improved and leveraged in the future to improve the internet of things (IoT) and smart home devices. The main Wi-Fi sensing methods can be broadly categorized as Received Signal Strength Indicator (RSSI), Wi-Fi radar (by using Software Defined Radio (SDR)) and Channel State Information (CSI). CSI and RSSI can be considered as device-free mechanisms because they do not require cumbersome installation, whereas the Wi-Fi radar mechanism requires special devices (i.e., Universal Software Radio Peripheral (USRP)). Recent studies demonstrate that CSI outperforms RSSI in sensing accuracy due to its stability and rich information. This paper presents a comprehensive survey of recent advances in the CSI-based sensing mechanism and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhengjie Wang ◽  
Wenwen Dou ◽  
Mingjing Ma ◽  
Xiaoxue Feng ◽  
Zehua Huang ◽  
...  

Recently, human behavior sensing based on WiFi channel state information has drawn more attention in the ubiquitous computing field because it can provide accurate information about the target under a device-free scheme. This paper concentrates on user authentication applications using channel state information. We investigate state-of-the-art studies and survey their characteristics. First, we introduce the concept of channel state information and outline the fundamental principle of user authentication. These systems measure the dynamic channel state information profile and implement user authentication by exploring the channel state information variation caused by users because each user generates unique channel state information fluctuations. Second, we elaborate on signal processing approaches, including signal selection and preprocessing, feature extraction, and classification methods. Third, we thoroughly investigate the latest user authentication applications. Specifically, we analyze these applications from typical human action, including gait, activity, gesture, and stillness. Finally, we provide a comprehensive discussion of user authentication and conclude the paper by presenting some open issues, research directions, and possible solutions.


Sign in / Sign up

Export Citation Format

Share Document