scholarly journals Pilot: Passive Device-Free Indoor Localization Using Channel State Information

Author(s):  
Jiang Xiao ◽  
Kaishun Wu ◽  
Youwen Yi ◽  
Lu Wang ◽  
Lionel M. Ni
Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4783
Author(s):  
Gao ◽  
Zhang ◽  
Xiao ◽  
Li

Recently, people have become more and more interested in wireless sensing applications, among which indoor localization is one of the most attractive. Generally, indoor localization can be classified as device-based and device-free localization (DFL). The former requires a target to carry certain devices or sensors to assist the localization process, whereas the latter has no such requirement, which merely requires the wireless network to be deployed around the environment to sense the target, rendering it much more challenging. Channel State Information (CSI)—a kind of information collected in the physical layer—is composed of multiple subcarriers, boasting highly fined granularity, which has gradually become a focus of indoor localization applications. In this paper, we propose an approach to performing DFL tasks by exploiting the uncertainty of CSI. We respectively utilize the CSI amplitudes and phases of multiple communication links to construct fingerprints, each of which is a set of multivariate Gaussian distributions that reflect the uncertainty information of CSI. Additionally, we propose a kind of combined fingerprints to simultaneously utilize the CSI amplitudes and phases, hoping to improve localization accuracy. Then, we adopt a Kullback–Leibler divergence (KL-divergence) based kernel function to calculate the probabilities that a testing fingerprint belongs to all the reference locations. Next, to localize the target, we utilize the computed probabilities as weights to average the reference locations. Experimental results show that the proposed approach, whatever type of fingerprints is used, outperforms the existing Pilot and Nuzzer systems in two typical indoor environments. We conduct extensive experiments to explore the effects of different parameters on localization performance, and the results demonstrate the efficiency of the proposed approach.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhengjie Wang ◽  
Wenwen Dou ◽  
Mingjing Ma ◽  
Xiaoxue Feng ◽  
Zehua Huang ◽  
...  

Recently, human behavior sensing based on WiFi channel state information has drawn more attention in the ubiquitous computing field because it can provide accurate information about the target under a device-free scheme. This paper concentrates on user authentication applications using channel state information. We investigate state-of-the-art studies and survey their characteristics. First, we introduce the concept of channel state information and outline the fundamental principle of user authentication. These systems measure the dynamic channel state information profile and implement user authentication by exploring the channel state information variation caused by users because each user generates unique channel state information fluctuations. Second, we elaborate on signal processing approaches, including signal selection and preprocessing, feature extraction, and classification methods. Third, we thoroughly investigate the latest user authentication applications. Specifically, we analyze these applications from typical human action, including gait, activity, gesture, and stillness. Finally, we provide a comprehensive discussion of user authentication and conclude the paper by presenting some open issues, research directions, and possible solutions.


Sign in / Sign up

Export Citation Format

Share Document