Rational computational design of protein binders for biosensor and therapeutic applications

2021 ◽  
Author(s):  
◽  
Jake Parker
2021 ◽  
Vol 34 ◽  
Author(s):  
Alessandro Bonadio ◽  
Julia M Shifman

Abstract Protein-based binders have become increasingly more attractive candidates for drug and imaging agent development. Such binders could be evolved from a number of different scaffolds, including antibodies, natural protein effectors and unrelated small protein domains of different geometries. While both computational and experimental approaches could be utilized for protein binder engineering, in this review we focus on various computational approaches for protein binder design and demonstrate how experimental selection could be applied to subsequently optimize computationally-designed molecules. Recent studies report a number of designed protein binders with pM affinities and high specificities for their targets. These binders usually characterized with high stability, solubility, and low production cost. Such attractive molecules are bound to become more common in various biotechnological and biomedical applications in the near future.


1996 ◽  
Vol 16 (01) ◽  
pp. 56-59
Author(s):  
D. J. Tyrrell ◽  
C. P. Page

SummaryEvidence continues to accumulate that the pleiotropic nature of heparin (beyond its anticoagulant potency) includes anti-inflammatory activities at a number of levels. It is clear that drugs exploiting these anti-inflammatory activities of heparin may offer exciting new therapeutic applications to the treatment of a wide range of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document