natural protein
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 64)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
Author(s):  
Els van der Goot ◽  
Stefanie N. Vink ◽  
Danique van Vliet ◽  
Francjan J. van Spronsen ◽  
Joana Falcao Salles ◽  
...  

Phenylketonuria (PKU) is a metabolic disorder caused by a hepatic enzyme deficiency causing high blood and brain levels of the amino acid Phenylalanine (Phe), leading to severe cognitive and psychological deficits that can be prevented, but not completely, by dietary treatment. The behavioral outcome of PKU could be affected by the gut-microbiome-brain axis, as diet is one of the major drivers of the gut microbiome composition. Gut-microbiome alterations have been reported in treated patients with PKU, although the question remains whether this is due to PKU, the dietary treatment, or their interaction. We, therefore, examined the effects of dietary Phe restriction on gut-microbiome composition and relationships with behavioral outcome in mice. Male and female BTBR Pahenu2 mice received either a control diet (normal protein, “high” Phe), liberalized Phe-restricted (33% natural protein restriction), or severe Phe-restricted (75% natural protein restriction) diet with protein substitutes for 10 weeks (n = 14 per group). Their behavioral performance was examined in an open field test, novel and spatial object location tests, and a balance beam. Fecal samples were collected and sequenced for the bacterial 16S ribosomal RNA (rRNA) region. Results indicated that PKU on a high Phe diet reduced Shannon diversity significantly and altered the microbiome composition compared with wild-type animals. Phe-restriction prevented this loss in Shannon diversity but changed community composition even more than the high-Phe diet, depending on the severity of the restriction. Moreover, on a taxonomic level, we observed the highest number of differentially abundant genera in animals that received 75% Phe-restriction. Based on correlation analyses with differentially abundant taxa, the families Entereococacceae, Erysipelotrichaceae, Porphyromonadaceae, and the genus Alloprevotella showed interesting relationships with either plasma Phe levels and/or object memory. According to our results, these bacterial taxa could be good candidates to start examining the microbial metabolic potential and probiotic properties in the context of PKU. We conclude that PKU leads to an altered gut microbiome composition in mice, which is least severe on a liberalized Phe-restricted diet. This may suggest that the current Phe-restricted diet for PKU patients could be optimized by taking dietary effects on the microbiome into account.


2021 ◽  
Vol 22 (24) ◽  
pp. 13445
Author(s):  
Hyo-Dong Sung ◽  
Nayeon Kim ◽  
Yeram Lee ◽  
Eun Jung Lee

The pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has upended healthcare systems and economies around the world. Rapid understanding of the structural biology and pathogenesis of SARS-CoV-2 has allowed the development of emergency use or FDA-approved vaccines and various candidate vaccines. Among the recently developed SARS-CoV-2 candidate vaccines, natural protein-based nanoparticles well suited for multivalent antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses are currently being investigated. This mini-review presents recent innovations in protein-based nanoparticle vaccines against SARS-CoV-2. The design and strategy of displaying antigenic domains, including spike protein, receptor-binding domain (RBD), and other domains on the surface of various protein-based nanoparticles and the performance of the developed nanoparticle-based vaccines are highlighted. In the final part of this review, we summarize and discuss recent advances in clinical trials and provide an outlook on protein-based nanoparticle vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soheila Naderi ◽  
Akbar Esmaeili

AbstractExtract oils from plants used in 3D polysaccharides modified with natural protein polymer modified polymer scaffolds can help to reduce blood pressure. This study aimed to use extract oils from plant (EOP)as blood pressure-reducing, bind them to magnetic iron nanoparticles (Fe3O4@NPs), then bind them to polymeric 3D print scaffolds [chitosan, polylactic acid, and polyurethane (CS/PLA/PU), modified with natural protein and finally separate them. This method made it possible to investigate different variables for nanoparticles. In this project, synthesis polymer, modified gelatin (Mo-Ge), PEGylation, extract oils from plant loading and release process in nanocarrier with different concentrations were examined and cell proliferation was optimized. The results show that 75% of the extract oils from plant loaded on iron magnetic nanoparticles containing PEGylated polymer scaffolds was released. Cell proliferation was performed for the sample. In this process, modification of scaffolding with polysaccharides modified with natural protein and extract oils from plant increased the efficiency of nanoparticles among the studied Allium sativum and Zingiber officinale. The size of A. sativum and Z. officinale were 29.833 nm and 150.02 nm size, respectively. These behaved very similarly to each other and A. sativum had the biggest effect in lowering blood pressure. The application of extract oils from plant in 3D mode scaffolding has not been studied before and this is the first analysis to do so, using nanoparticles.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7191
Author(s):  
Andra Grava ◽  
Karina Egle ◽  
Arita Dubnika

Our research focuses on combining the valuable properties of silk fibroin (SF) and calcium phosphate (CaP). SF is a natural protein with an easily modifiable structure; CaP is a mineral found in the human body. Most of the new age biocomposites lack interaction between organic/inorganic phase, thus SF/CaP composite could not only mimic the natural bone, but could also be used to make drug delivery systems as well, which can ensure both healing and regeneration. CaP was synthesized in situ in SF at different pH values, and then crosslinked with gelatin (G), horseradish peroxide (HRP), and hydrogen peroxide (H2O2). In addition, dexamethasone phosphate (DEX) was incorporated in the hydrogel and drug delivery kinetics was studied. Hydrogel made at pH 10.0 was found to have the highest gel fraction 110.24%, swelling degree 956.32%, and sustained drug delivery for 72 h. The highest cell viability was observed for the hydrogel, which contained brushite (pH 6)—512.43%.


2021 ◽  
Vol 7 (43) ◽  
Author(s):  
Gauthier J.-P. Deblonde ◽  
Joseph A. Mattocks ◽  
Ziye Dong ◽  
Paul T. Wooddy ◽  
Joseph A. Cotruvo ◽  
...  

Author(s):  
Dina O. Helal ◽  
Nadia Rouatbi ◽  
Shunping Han ◽  
Julie Tzu-Wen Wang ◽  
Adam A Walters ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 ◽  
Author(s):  
Noelia Ferruz ◽  
Florian Michel ◽  
Francisco Lobos ◽  
Steffen Schmidt ◽  
Birte Höcker

Modern proteins have been shown to share evolutionary relationships via subdomain-sized fragments. The assembly of such fragments through duplication and recombination events led to the complex structures and functions we observe today. We previously implemented a pipeline that identified more than 1,000 of these fragments that are shared by different protein folds and developed a web interface to analyze and search for them. This resource named Fuzzle helps structural and evolutionary biologists to identify and analyze conserved parts of a protein but it also provides protein engineers with building blocks for example to design proteins by fragment combination. Here, we describe a new version of this web resource that was extended to include ligand information. This addition is a significant asset to the database since now protein fragments that bind specific ligands can be identified and analyzed. Often the mode of ligand binding is conserved in proteins thereby supporting a common evolutionary origin. The same can now be explored for subdomain-sized fragments within this database. This ligand binding information can also be used in protein engineering to graft binding pockets into other protein scaffolds or to transfer functional sites via recombination of a specific fragment. Fuzzle 2.0 is freely available at https://fuzzle.uni-bayreuth.de/2.0.


2021 ◽  
Vol 12 (3) ◽  
pp. 3966-3976

Hydrogels are one of the biopolymers that have been applied and have excellent potential to be developed as a raw material in future food technology, biomedicine, and three-dimensional (3D) bioprinting. Even stigmatized that hydrogels are the only source of bioink for 3D bioprinting. Among natural sources, protein-based hydrogels have advantages in the aspects of biocompatibility, biodegradability, tunability, molecular binding ability, and bioactive properties. Gelatin is a natural protein-based biopolymer that offers potential. Besides its advantages as a natural protein-based hydrogel, gelatin is also inexpensive, usually extracted from processing by-products such as skins and bones. Studies also mentioned that gelatin has the tripeptide motif that promotes cell attachment for subsequent cellular processes, like migration, differentiation, and proliferation. However, most gelatin is derived from mammalian sources, while these sources are limited considering socio-religion, cultural, health aspects. Fish gelatin is the most potential source for alternative gelatin. They have uniqueness and viscosity for bio-fabrication and injectable hydrogels. Therefore, this paper will review the hydrogels based on fish gelatin studied in recent years and the last decade. Here also described the stages in the fabrication of fish gelatin hydrogels/hydrogel composites with different co-polymers, composite materials, polymerization methods, and future intended use of obtained fish gelatin hydrogels/composites.


Sign in / Sign up

Export Citation Format

Share Document