scholarly journals Reduced order methods for nonlinear parametric problems with branching solutions

Author(s):  
Federico Pichi ◽  
Martin Wilfried Hess ◽  
Annalisa Quaini ◽  
Gianluigi Rozza

The aim of this work is to show the applicability of the reduced basis model reduction in nonlinear systems undergoing bifurcations. Bifurcation analysis, i.e., following the different bifurcating branches, as well as determining the bifurcation point itself, is a complex computational task. Reduced Order Models (ROM) can potentially reduce the computational burden by several orders of magnitude, in particular in conjunction with sampling techniques. In the first task we focus on nonlinear structural mechanics, and we deal with an application of ROM to Von Kármán plate equations, where the buckling effect arises, adopting reduced basis method. Moreover, in the search of the bifurcation points, it is crucial to supplement the full problem with a reduced generalized parametric eigenvalue problem, properly paired with state equations and also a reduced order error analysis. These studies are carried out in view of vibroacoustic applications (in collaboration with A.T. Patera at MIT). As second task we consider the incompressible Navier-Stokes equations, discretized with the spectral element method, in a channel and a cavity. Both system undergo bifurcations with increasing Reynolds - and Grashof - number, respectively. Applications of this model are contraction-expansion channels, found in many biological systems, such as the human heart, for instance, or crystal growth in cavities, used in semiconductor production processes. This last task is in collaboration with A. Alla and M. Gunzburger (Florida State University).

2019 ◽  
Vol 24 (2) ◽  
pp. 45 ◽  
Author(s):  
Nissrine Akkari ◽  
Fabien Casenave ◽  
Vincent Moureau

In the following paper, we consider the problem of constructing a time stable reduced order model of the 3D turbulent and incompressible Navier–Stokes equations. The lack of stability associated with the order reduction methods of the Navier–Stokes equations is a well-known problem and, in general, it is very difficult to account for different scales of a turbulent flow in the same reduced space. To remedy this problem, we propose a new stabilization technique based on an a priori enrichment of the classical proper orthogonal decomposition (POD) modes with dissipative modes associated with the gradient of the velocity fields. The main idea is to be able to do an a priori analysis of different modes in order to arrange a POD basis in a different way, which is defined by the enforcement of the energetic dissipative modes within the first orders of the reduced order basis. This enables us to model the production and the dissipation of the turbulent kinetic energy (TKE) in a separate fashion within the high ranked new velocity modes, hence to ensure good stability of the reduced order model. We show the importance of this a priori enrichment of the reduced basis, on a typical aeronautical injector with Reynolds number of 45,000. We demonstrate the capacity of this order reduction technique to recover large scale features for very long integration times (25 ms in our case). Moreover, the reduced order modeling (ROM) exhibits periodic fluctuations with a period of 2 . 2 ms corresponding to the time scale of the precessing vortex core (PVC) associated with this test case. We will end this paper by giving some prospects on the use of this stable reduced model in order to perform time extrapolation, that could be a strategy to study the limit cycle of the PVC.


2020 ◽  
Vol 47 (1) ◽  
Author(s):  
Moreno Pintore ◽  
Federico Pichi ◽  
Martin Hess ◽  
Gianluigi Rozza ◽  
Claudio Canuto

AbstractThe majority of the most common physical phenomena can be described using partial differential equations (PDEs). However, they are very often characterized by strong nonlinearities. Such features lead to the coexistence of multiple solutions studied by the bifurcation theory. Unfortunately, in practical scenarios, one has to exploit numerical methods to compute the solutions of systems of PDEs, even if the classical techniques are usually able to compute only a single solution for any value of a parameter when more branches exist. In this work, we implemented an elaborated deflated continuation method that relies on the spectral element method (SEM) and on the reduced basis (RB) one to efficiently compute bifurcation diagrams with more parameters and more bifurcation points. The deflated continuation method can be obtained combining the classical continuation method and the deflation one: the former is used to entirely track each known branch of the diagram, while the latter is exploited to discover the new ones. Finally, when more than one parameter is considered, the efficiency of the computation is ensured by the fact that the diagrams can be computed during the online phase while, during the offline one, one only has to compute one-dimensional diagrams. In this work, after a more detailed description of the method, we will show the results that can be obtained using it to compute a bifurcation diagram associated with a problem governed by the Navier-Stokes equations.


2009 ◽  
Vol 629 ◽  
pp. 41-72 ◽  
Author(s):  
ALEXANDER HAY ◽  
JEFFREY T. BORGGAARD ◽  
DOMINIQUE PELLETIER

The proper orthogonal decomposition (POD) is the prevailing method for basis generation in the model reduction of fluids. A serious limitation of this method, however, is that it is empirical. In other words, this basis accurately represents the flow data used to generate it, but may not be accurate when applied ‘off-design’. Thus, the reduced-order model may lose accuracy for flow parameters (e.g. Reynolds number, initial or boundary conditions and forcing parameters) different from those used to generate the POD basis and generally does. This paper investigates the use of sensitivity analysis in the basis selection step to partially address this limitation. We examine two strategies that use the sensitivity of the POD modes with respect to the problem parameters. Numerical experiments performed on the flow past a square cylinder over a range of Reynolds numbers demonstrate the effectiveness of these strategies. The newly derived bases allow for a more accurate representation of the flows when exploring the parameter space. Expanding the POD basis built at one state with its sensitivity leads to low-dimensional dynamical systems having attractors that approximate fairly well the attractor of the full-order Navier–Stokes equations for large parameter changes.


Sign in / Sign up

Export Citation Format

Share Document