scholarly journals Estimation of the genetic diversity of jabuticaba trees and association among fruit characters

2020 ◽  
Vol 11 ◽  
pp. e3337
Author(s):  
José Carlos Moraes Rufini ◽  
Miriã Cristina Pereira Fagundes ◽  
Deniete Soares Magalhães ◽  
Alejandra Semiramis Albuquerque ◽  
Martha Cristina Pereira Ramos ◽  
...  

The aim of this study was to evaluate the genetic dissimilarity of different jabuticaba tree accessions from Prudente de Moraes, Minas Gerais State, Brazil, based on fruit characters. The genetic diversity study was carried out based on characters evaluated in fruits, and with the elimination of redundant descriptors, nine characters were selected to estimate genetic divergence and perform clustering. The Standardized Mean Euclidian Distance was used as dissimilarity measure. The clustering methods used were Tocher and the nearest neighbor. Correlation analysis among characters was performed by Pearson correlation (p> 0.05). Accessions 4, 5, 7 and 12 have potential for in improvement programs aiming for productivity. The character that contributed most to the genetic diversity of the accessions were the soluble solids important for the processing industry and for fresh consumption. Genotypes showed variability for most characters analyzed showing the possibility of selection and identification of parents that will be used in future crossings.

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Swati Shrestha ◽  
Gourav Sharma ◽  
Shandrea Stallworth ◽  
Edilberto D. Redona ◽  
Te Ming Tseng

Increasing agricultural productivity is indispensable to meet future food demand. Crop improvement programs rely heavily on genetic diversity. The success of weeds in the ecosystem can be attributed to genetic diversity and plasticity. Weedy rice, a major weed of rice, has diverse morphology and phenology, implying wide genetic diversity. Study was conducted to genotype weedy rice accessions (n = 54) previously phenotyped for herbicide tolerance and allelopathic potential using 30 SSR markers. Cultivated rice (CL163, REX) and allelopathic rice (RONDO, PI312777, PI338047) were also included in the study. Nei’s genetic diversity among weedy rice (0.45) was found to be higher than cultivated rice (0.24) but less than allelopathic rice (0.56). The genetic relationship and population structure based on herbicide tolerance and allelopathic potential were evaluated. Herbicide-tolerant and susceptible accessions formed distinct clusters in the dendrogram, indicating their genetic variation, whereas no distinction was observed between allelopathic and non-allelopathic weedy rice accessions. Weedy rice accession B2, which was previously reported to have high allelopathy and herbicide tolerance, was genetically distinct from other weedy rice. Results from the study will help leverage weedy rice for rice improvement programs as both rice and weedy rice are closely related, thus having a low breeding barrier.


Author(s):  
Swati Shrestha ◽  
Gourav Sharma ◽  
Shandrea Stallworth ◽  
E. D. Redoña ◽  
Te Ming Tseng

Increasing agricultural productivity is indispensable to meet future food demand. Crop im-provement programs rely heavily on genetic diversity. The success of weeds in the ecosystem can be attributed to genetic diversity and plasticity. Weedy rice, a major weed of rice, has diverse morphology and phenology, implying wide genetic diversity. Study was conducted to genotype weedy rice accessions (n =54) previously phenotyped for herbicide tolerance and allelopathic potential using 30 SSR markers. Cultivated rice (CL163, REX) and allelopathic rice (RONDO, PI312777, PI338047) were also included in the study. Nei’s genetic diversity among weedy rice (0.45) was found to be higher than cultivated rice (0.24) but less than allelopathic rice (0.56). The genetic relationship and population structure based on herbicide tolerance and allelopathic po-tential were evaluated. Herbicide-tolerant and susceptible accessions formed distinct clusters in the dendrogram, indicating their genetic variation, whereas no distinction was observed between allelopathic and non-allelopathic weedy rice accessions. Weedy rice accession B2, which was previously reported to have high allelopathy and herbicide tolerance, was genetically distinct from other weedy rice. Results from the study will help leverage weedy rice for rice improvement programs as both rice and weedy rice are closely related, thus having a low breeding barrier.


1999 ◽  
Vol 65 (4) ◽  
pp. 520-526 ◽  
Author(s):  
Uthairat Na-Nakorn ◽  
Nobuhiko Taniguchi ◽  
Estu Nugroho ◽  
Shingo Seki ◽  
Wongpathom Kamonrat

2006 ◽  
Vol 34 (12) ◽  
pp. 868-874 ◽  
Author(s):  
Jianhua Huang ◽  
Muwang Li ◽  
Yong Zhang ◽  
Wenbin Liu ◽  
Minghui Li ◽  
...  

2010 ◽  
Vol 46 (11) ◽  
pp. 1314-1319 ◽  
Author(s):  
M. Tucak ◽  
S. Popović ◽  
T. Čupić ◽  
S. Grljušić ◽  
V. Meglič ◽  
...  

2006 ◽  
Vol 96 (1) ◽  
pp. 96-104 ◽  
Author(s):  
F. J. Keiper ◽  
M. S. Haque ◽  
M. J. Hayden ◽  
R. F. Park

Sequence-tagged microsatellite profiling was used to develop 110 microsatellites for Puccinia graminis f. sp. tritici (causal agent of wheat stem rust). Low microsatellite polymorphism was exhibited among 10 pathogenically diverse P. graminis f. sp. tritici isolates collected from Australian cereal growing regions over a period of at least 70 years, with two polymorphic loci detected, each revealing two alleles. Limited cross-species amplification was observed for the wheat rust pathogens, P. triticina (leaf rust) and P. striiformis f. sp. tritici (stripe rust). However, very high transferability was revealed with P. graminis f. sp. avenae (causal agent of oat stem rust) isolates. A genetic diversity study of 47 P. graminis f. sp. avenae isolates collected from an Australia-wide survey in 1999, and a historical group of 16 isolates collected from Australian cereal growing regions from 1971 to 1996, revealed six polymorphic microsatellite loci with a total of 15 alleles. Genetic analysis revealed the presence of several clonal lineages and subpopulations in the pathogen population, and wide dispersal of identical races and genotypes throughout Australian cereal-growing regions. These findings demonstrated the dynamic population structure of this pathogen in Australia and concur with the patterns of diversity observed in pathogenicity studies.


Sign in / Sign up

Export Citation Format

Share Document