scholarly journals Numerical Analysis of the Temperature Field in Luminaires

10.14311/550 ◽  
2004 ◽  
Vol 44 (2) ◽  
Author(s):  
J. Murín ◽  
M. Kropáč ◽  
R. Fric

This paper contains a calculation of the thermal field caused by electro-heat in lighting devices. After specifying the heat sources, a thermal analysis is make using the finite element method and the equivalent thermal scheme method. The calculated results have been verified experimentally.

2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 113-120 ◽  
Author(s):  
Vukic Lazic ◽  
Ivana Ivanovic ◽  
Aleksandar Sedmak ◽  
Rebeka Rudolf ◽  
Mirjana Lazic ◽  
...  

The three-dimensional transient nonlinear thermal analysis of the hard facing process is performed by using the finite element method. The simulations were executed on the open source Salome platform using the open source finite element solver Code_Aster. The Gaussian double ellipsoid was selected in order to enable greater possibilities for the calculation of the moving heat source. The numerical results were compared with available experimental results.


1995 ◽  
Vol 05 (03) ◽  
pp. 351-365 ◽  
Author(s):  
V. SHUTYAEV ◽  
O. TRUFANOV

This paper is concerned with the numerical analysis of the mathematical model for a semiconductor device with the use of the Boltzmann equation. A mixed initial-boundary value problem for nonstationary Boltzmann-Poisson system in the case of one spatial variable is considered. A numerical algorithm for solving this problem is constructed and justified. The algorithm is based on an iterative process and the finite element method. A numerical example is presented.


2004 ◽  
Vol 241 (12) ◽  
pp. 2681-2684 ◽  
Author(s):  
Tae Hee Lee ◽  
Lan Kim ◽  
Woong Joon Hwang ◽  
C. C. Lee ◽  
Moo Whan Shin

2006 ◽  
Vol 26 (8-9) ◽  
pp. 777-786 ◽  
Author(s):  
J.J. del Coz Díaz ◽  
P.J. García Nieto ◽  
A. Martín Rodríguez ◽  
A. Lozano Martínez-Luengas ◽  
C. Betegón Biempica

2020 ◽  
Vol 39 (2) ◽  
pp. 351-362
Author(s):  
M.M. Ufe ◽  
S.N. Apebo ◽  
A.Y. Iorliam

This study derived analytical solutions for the deflection of a rectangular cross sectional uniformly tapered cantilever beam with varying configurations of width and breadth acting under an end point load. The deflection equations were derived using a numerical analysis method known as the finite element method. The verification of these analytical solutions was done by deterministic optimisation of the equations using the ModelCenter reliability analysis software and the Abaqus finite element modelling and optimisation software. The results obtained show that the best element type for the finite element analysis of a tapered cantilever beam acting under an end point load is the C3D20RH (A 20-node quadratic brick, hybrid element with linear pressure and reduced integration) beam element; it predicted an end displacement of 0.05035 m for the tapered width, constant height cantilever beam which was the closest value to the analytical optimum of 0.05352 m. The little difference in the deflection value accounted for the numerical error which is inevitably present in the analyses of structural systems. It is recommended that detailed and accurate numerical analysis be adopted in the design of complex structural systems in order to ascertain the degree of uncertainty in design. Keywords: Deflection, Finite element method, deterministic optimisation, numerical error, cantilever beam.


Sign in / Sign up

Export Citation Format

Share Document