Numerical analysis of the mechanical behavior of a ring-spinning triangle using the Finite Element Method

2011 ◽  
Vol 81 (9) ◽  
pp. 959-971 ◽  
Author(s):  
Sheng Yan Li ◽  
Bin Gang Xu ◽  
Xiao Ming Tao ◽  
Jie Feng
1995 ◽  
Vol 05 (03) ◽  
pp. 351-365 ◽  
Author(s):  
V. SHUTYAEV ◽  
O. TRUFANOV

This paper is concerned with the numerical analysis of the mathematical model for a semiconductor device with the use of the Boltzmann equation. A mixed initial-boundary value problem for nonstationary Boltzmann-Poisson system in the case of one spatial variable is considered. A numerical algorithm for solving this problem is constructed and justified. The algorithm is based on an iterative process and the finite element method. A numerical example is presented.


2010 ◽  
Author(s):  
Sheng Yan Li ◽  
Bin Gang Xu ◽  
Xiao Ming Tao ◽  
Jane W. Z. Lu ◽  
Andrew Y. T. Leung ◽  
...  

1984 ◽  
Vol 106 (1) ◽  
pp. 130-136 ◽  
Author(s):  
W. T. Asbill ◽  
P. D. Pattillo ◽  
W. M. Rogers

The purpose of this investigation was to gain a better understanding into the mechanical behavior of the API 8 Round casing connection, when subjected to service loads of assembly interference, tension and internal pressure. The connection must provide both structural and sealing functions and these functions were evaluated by several methods. Part I discusses the methods of analysis, which include hand calculations using strength of materials, finite element method via unthreaded and threaded models, and experimental analysis using strain gages. Comparisons of all three methods are made for stresses and show that the finite element method accurately models connection behavior.


2020 ◽  
Vol 39 (2) ◽  
pp. 351-362
Author(s):  
M.M. Ufe ◽  
S.N. Apebo ◽  
A.Y. Iorliam

This study derived analytical solutions for the deflection of a rectangular cross sectional uniformly tapered cantilever beam with varying configurations of width and breadth acting under an end point load. The deflection equations were derived using a numerical analysis method known as the finite element method. The verification of these analytical solutions was done by deterministic optimisation of the equations using the ModelCenter reliability analysis software and the Abaqus finite element modelling and optimisation software. The results obtained show that the best element type for the finite element analysis of a tapered cantilever beam acting under an end point load is the C3D20RH (A 20-node quadratic brick, hybrid element with linear pressure and reduced integration) beam element; it predicted an end displacement of 0.05035 m for the tapered width, constant height cantilever beam which was the closest value to the analytical optimum of 0.05352 m. The little difference in the deflection value accounted for the numerical error which is inevitably present in the analyses of structural systems. It is recommended that detailed and accurate numerical analysis be adopted in the design of complex structural systems in order to ascertain the degree of uncertainty in design. Keywords: Deflection, Finite element method, deterministic optimisation, numerical error, cantilever beam.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Krzysztof Kosiuczenko ◽  
◽  
Robert Sosnowicz ◽  

The paper presents the results of simulation tests of the entry of a floating transporter to a water obstacle. The simulation tests were performed with the use of LS Dyna program, based on the finite element method (FEM). The computational model was developed and used in the simulation of the manoeuvre of entering the water obstacle for the extreme conditions, which are described by NATO standards. For a model, as an example vehicle, the floating transporter PTS-M was used. The results of the application of the elaborated model confirmed the possibility to utilise the method to verify the behaviour of a vehicle in a very important and difficult problem from the point of view of vehicle safety conditions.


2017 ◽  
Vol 20 (K2) ◽  
pp. 141-147
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Analysis of mechanical behavior of a structure containing defects such as holes and inclusions is essential in many engineering applications. In many structures, the discontinuities may have a significant influence on the reduction of the structural stiffness. In this work, we consider the effect of multiple random holes and inclusions in functionally graded material (FGM) plate and apply the extended finite element method with enrichment functions to simulate the mechanical behavior of those discontinuous interfaces. The inclusions also have FGM properties. Numerical examples are considered and their obtained results are compared with the COMSOL, the finite element method software.


Sign in / Sign up

Export Citation Format

Share Document