scholarly journals ON CONNECTING WEYL-ORBIT FUNCTIONS TO JACOBI POLYNOMIALS AND MULTIVARIATE (ANTI)SYMMETRIC TRIGONOMETRIC FUNCTIONS

2016 ◽  
Vol 56 (4) ◽  
pp. 283-290 ◽  
Author(s):  
Jiri Hrivnak ◽  
Lenka Motlochova

<p>The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of <em>A<sub>1</sub></em> and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of <em>A<sub>2</sub></em> and a specific version of two variable Jacobi polynomials. The connection with recently studied <em>G<sub>2</sub></em>-polynomials is established. Formulas for connection between the four types of orbit functions of <em>B<sub>n</sub></em> or <em>C<sub>n</sub></em> and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.</p>

2016 ◽  
Vol 56 (4) ◽  
pp. 283 ◽  
Author(s):  
Jiri Hrivnak ◽  
Lenka Motlochova

<p>The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of <em>A<sub>1</sub></em> and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of <em>A<sub>2</sub></em> and a specific version of two variable Jacobi polynomials. The connection with recently studied <em>G<sub>2</sub></em>-polynomials is established. Formulas for connection between the four types of orbit functions of <em>B<sub>n</sub></em> or <em>C<sub>n</sub></em> and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.</p>


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
Aleksey Kostenko

AbstractFor the discrete Laguerre operators we compute explicitly the corresponding heat kernels by expressing them with the help of Jacobi polynomials. This enables us to show that the heat semigroup is ultracontractive and to compute the corresponding norms. On the one hand, this helps us to answer basic questions (recurrence, stochastic completeness) regarding the associated Markovian semigroup. On the other hand, we prove the analogs of the Cwiekel–Lieb–Rosenblum and the Bargmann estimates for perturbations of the Laguerre operators, as well as the optimal Hardy inequality.


Author(s):  
Greg W. Anderson

This article describes a direct approach for computing scalar and matrix kernels, respectively for the unitary ensembles on the one hand and the orthogonal and symplectic ensembles on the other hand, leading to correlation functions and gap probabilities. In the classical orthogonal polynomials (Hermite, Laguerre, and Jacobi), the matrix kernels for the orthogonal and symplectic ensemble are expressed in terms of the scalar kernel for the unitary case, using the relation between the classical orthogonal polynomials going with the unitary ensembles and the skew-orthogonal polynomials going with the orthogonal and symplectic ensembles. The article states the fundamental theorem relating the orthonormal and skew-orthonormal polynomials that enter into the Christoffel-Darboux kernels


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 617 ◽  
Author(s):  
Dmitry Dolgy ◽  
Dae Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions F 0 2 , F 1 2 , and F 2 3 .


Author(s):  
Dmitry Victorovich Dolgy ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions ${}_2 F_0, {}_2 F_1$, and ${}_3 F_2$.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 938 ◽  
Author(s):  
Adam Brus ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Sixteen types of the discrete multivariate transforms, induced by the multivariate antisymmetric and symmetric sine functions, are explicitly developed. Provided by the discrete transforms, inherent interpolation methods are formulated. The four generated classes of the corresponding orthogonal polynomials generalize the formation of the Chebyshev polynomials of the second and fourth kinds. Continuous orthogonality relations of the polynomials together with the inherent weight functions are deduced. Sixteen cubature rules, including the four Gaussian, are produced by the related discrete transforms. For the three-dimensional case, interpolation tests, unitary transform matrices and recursive algorithms for calculation of the polynomials are presented.


1997 ◽  
Vol 49 (2) ◽  
pp. 374-405 ◽  
Author(s):  
Jasper V. Stokman ◽  
Tom H. Koornwinder

AbstractLimit transitions will be derived between the five parameter family of Askey-Wilson polynomials, the four parameter family of big q-Jacobi polynomials and the three parameter family of little q-Jacobi polynomials in n variables associated with root system BC. These limit transitions generalize the known hierarchy structure between these families in the one variable case. Furthermore it will be proved that these three families are q-analogues of the three parameter family of BC type Jacobi polynomials in n variables. The limit transitions will be derived by taking limits of q-difference operators which have these polynomials as eigenfunctions.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 210 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Jongkyum Kwon ◽  
Dmitry Dolgy

This paper is concerned with representing sums of the finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials. Indeed, by explicit computations, each of them is expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials, which involve the hypergeometric functions 1 F 1 and 2 F 1 .


Author(s):  
Stefan Kahler

AbstractIn the theory of orthogonal polynomials, as well as in its intersection with harmonic analysis, it is an important problem to decide whether a given orthogonal polynomial sequence $$(P_n(x))_{n\in \mathbb {N}_0}$$ ( P n ( x ) ) n ∈ N 0 satisfies nonnegative linearization of products, i.e., the product of any two $$P_m(x),P_n(x)$$ P m ( x ) , P n ( x ) is a conical combination of the polynomials $$P_{|m-n|}(x),\ldots ,P_{m+n}(x)$$ P | m - n | ( x ) , … , P m + n ( x ) . Since the coefficients in the arising expansions are often of cumbersome structure or not explicitly available, such considerations are generally very nontrivial. Gasper (Can J Math 22:582–593, 1970) was able to determine the set V of all pairs $$(\alpha ,\beta )\in (-1,\infty )^2$$ ( α , β ) ∈ ( - 1 , ∞ ) 2 for which the corresponding Jacobi polynomials $$(R_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( R n ( α , β ) ( x ) ) n ∈ N 0 , normalized by $$R_n^{(\alpha ,\beta )}(1)\equiv 1$$ R n ( α , β ) ( 1 ) ≡ 1 , satisfy nonnegative linearization of products. Szwarc (Inzell Lectures on Orthogonal Polynomials, Adv. Theory Spec. Funct. Orthogonal Polynomials, vol 2, Nova Sci. Publ., Hauppauge, NY pp 103–139, 2005) asked to solve the analogous problem for the generalized Chebyshev polynomials $$(T_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( T n ( α , β ) ( x ) ) n ∈ N 0 , which are the quadratic transformations of the Jacobi polynomials and orthogonal w.r.t. the measure $$(1-x^2)^{\alpha }|x|^{2\beta +1}\chi _{(-1,1)}(x)\,\mathrm {d}x$$ ( 1 - x 2 ) α | x | 2 β + 1 χ ( - 1 , 1 ) ( x ) d x . In this paper, we give the solution and show that $$(T_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( T n ( α , β ) ( x ) ) n ∈ N 0 satisfies nonnegative linearization of products if and only if $$(\alpha ,\beta )\in V$$ ( α , β ) ∈ V , so the generalized Chebyshev polynomials share this property with the Jacobi polynomials. Moreover, we reconsider the Jacobi polynomials themselves, simplify Gasper’s original proof and characterize strict positivity of the linearization coefficients. Our results can also be regarded as sharpenings of Gasper’s one.


Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Dmitry V. Dolgy

This paper is concerned with representing sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials. Indeed, by explicit computations each of them is expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials which involve the hypergeometric functions ${}_1 F_1$ and ${}_2 F_1$.


Sign in / Sign up

Export Citation Format

Share Document