scholarly journals Nonnegative and Strictly Positive Linearization of Jacobi and Generalized Chebyshev Polynomials

Author(s):  
Stefan Kahler

AbstractIn the theory of orthogonal polynomials, as well as in its intersection with harmonic analysis, it is an important problem to decide whether a given orthogonal polynomial sequence $$(P_n(x))_{n\in \mathbb {N}_0}$$ ( P n ( x ) ) n ∈ N 0 satisfies nonnegative linearization of products, i.e., the product of any two $$P_m(x),P_n(x)$$ P m ( x ) , P n ( x ) is a conical combination of the polynomials $$P_{|m-n|}(x),\ldots ,P_{m+n}(x)$$ P | m - n | ( x ) , … , P m + n ( x ) . Since the coefficients in the arising expansions are often of cumbersome structure or not explicitly available, such considerations are generally very nontrivial. Gasper (Can J Math 22:582–593, 1970) was able to determine the set V of all pairs $$(\alpha ,\beta )\in (-1,\infty )^2$$ ( α , β ) ∈ ( - 1 , ∞ ) 2 for which the corresponding Jacobi polynomials $$(R_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( R n ( α , β ) ( x ) ) n ∈ N 0 , normalized by $$R_n^{(\alpha ,\beta )}(1)\equiv 1$$ R n ( α , β ) ( 1 ) ≡ 1 , satisfy nonnegative linearization of products. Szwarc (Inzell Lectures on Orthogonal Polynomials, Adv. Theory Spec. Funct. Orthogonal Polynomials, vol 2, Nova Sci. Publ., Hauppauge, NY pp 103–139, 2005) asked to solve the analogous problem for the generalized Chebyshev polynomials $$(T_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( T n ( α , β ) ( x ) ) n ∈ N 0 , which are the quadratic transformations of the Jacobi polynomials and orthogonal w.r.t. the measure $$(1-x^2)^{\alpha }|x|^{2\beta +1}\chi _{(-1,1)}(x)\,\mathrm {d}x$$ ( 1 - x 2 ) α | x | 2 β + 1 χ ( - 1 , 1 ) ( x ) d x . In this paper, we give the solution and show that $$(T_n^{(\alpha ,\beta )}(x))_{n\in \mathbb {N}_0}$$ ( T n ( α , β ) ( x ) ) n ∈ N 0 satisfies nonnegative linearization of products if and only if $$(\alpha ,\beta )\in V$$ ( α , β ) ∈ V , so the generalized Chebyshev polynomials share this property with the Jacobi polynomials. Moreover, we reconsider the Jacobi polynomials themselves, simplify Gasper’s original proof and characterize strict positivity of the linearization coefficients. Our results can also be regarded as sharpenings of Gasper’s one.

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Waleed Mohamed Abd-Elhameed ◽  
Afnan Ali

The main purpose of the current article is to develop new specific and general linearization formulas of some classes of Jacobi polynomials. The basic idea behind the derivation of these formulas is based on reducing the linearization coefficients which are represented in terms of the Kampé de Fériet function for some particular choices of the involved parameters. In some cases, the required reduction is performed with the aid of some standard reduction formulas for certain hypergeometric functions of unit argument, while, in other cases, the reduction cannot be done via standard formulas, so we resort to certain symbolic algebraic computation, and specifically the algorithms of Zeilberger, Petkovsek, and van Hoeij. Some new linearization formulas of ultraspherical polynomials and third-and fourth-kinds Chebyshev polynomials are established.


1992 ◽  
Vol 35 (3) ◽  
pp. 381-389
Author(s):  
William B. Jones ◽  
W. J. Thron ◽  
Nancy J. Wyshinski

AbstractIt is known that the n-th denominators Qn (α, β, z) of a real J-fractionwhereform an orthogonal polynomial sequence (OPS) with respect to a distribution function ψ(t) on ℝ. We use separate convergence results for continued fractions to prove the asymptotic formulathe convergence being uniform on compact subsets of


2016 ◽  
Vol 56 (4) ◽  
pp. 283-290 ◽  
Author(s):  
Jiri Hrivnak ◽  
Lenka Motlochova

<p>The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of <em>A<sub>1</sub></em> and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of <em>A<sub>2</sub></em> and a specific version of two variable Jacobi polynomials. The connection with recently studied <em>G<sub>2</sub></em>-polynomials is established. Formulas for connection between the four types of orbit functions of <em>B<sub>n</sub></em> or <em>C<sub>n</sub></em> and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.</p>


1981 ◽  
Vol 33 (4) ◽  
pp. 915-928 ◽  
Author(s):  
Mizan Rahman

The problem of linearizing products of orthogonal polynomials, in general, and of ultraspherical and Jacobi polynomials, in particular, has been studied by several authors in recent years [1, 2, 9, 10, 13-16]. Standard defining relation [7, 18] for the Jacobi polynomials is given in terms of an ordinary hypergeometric function:with Re α > –1, Re β > –1, –1 ≦ x ≦ 1. However, for linearization problems the polynomials Rn(α,β)(x), normalized to unity at x = 1, are more convenient to use:(1.1)Roughly speaking, the linearization problem consists of finding the coefficients g(k, m, n; α,β) in the expansion(1.2)


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 617 ◽  
Author(s):  
Dmitry Dolgy ◽  
Dae Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions F 0 2 , F 1 2 , and F 2 3 .


Author(s):  
Richard Askey ◽  
George Gasper

The answers to many important questions in the harmonic analysis of orthogonal polynomials are known to depend on the determination of when formulas of the typesand their dualshold, where pn(x) and qn(x) are suitably normalized orthogonal polynomials or orthogonal polynomials multiplied by certain functions; e.g. e−pxLn(x).


Author(s):  
Dmitry Victorovich Dolgy ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions ${}_2 F_0, {}_2 F_1$, and ${}_3 F_2$.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 210 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Jongkyum Kwon ◽  
Dmitry Dolgy

This paper is concerned with representing sums of the finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials. Indeed, by explicit computations, each of them is expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials, which involve the hypergeometric functions 1 F 1 and 2 F 1 .


2016 ◽  
Vol 56 (4) ◽  
pp. 283 ◽  
Author(s):  
Jiri Hrivnak ◽  
Lenka Motlochova

<p>The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of <em>A<sub>1</sub></em> and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of <em>A<sub>2</sub></em> and a specific version of two variable Jacobi polynomials. The connection with recently studied <em>G<sub>2</sub></em>-polynomials is established. Formulas for connection between the four types of orbit functions of <em>B<sub>n</sub></em> or <em>C<sub>n</sub></em> and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.</p>


Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Dmitry V. Dolgy

This paper is concerned with representing sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials. Indeed, by explicit computations each of them is expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials which involve the hypergeometric functions ${}_1 F_1$ and ${}_2 F_1$.


Sign in / Sign up

Export Citation Format

Share Document