A Phase Calibration Method Robust to the Sensor Position Error

2017 ◽  
Vol 6 (0) ◽  
pp. 10
Author(s):  
Min XU ◽  
Guang-ming HUANG ◽  
Yan-ni Shen ◽  
Jiang-bo LIU ◽  
Li WANG ◽  
...  
2021 ◽  
Vol 187 ◽  
pp. 188-193
Author(s):  
Fang Liu ◽  
Ming Lyn ◽  
Haohao Hou

2021 ◽  
Vol 11 (3) ◽  
pp. 1287
Author(s):  
Tianyan Chen ◽  
Jinsong Lin ◽  
Deyu Wu ◽  
Haibin Wu

Based on the current situation of high precision and comparatively low APA (absolute positioning accuracy) in industrial robots, a calibration method to enhance the APA of industrial robots is proposed. In view of the "hidden" characteristics of the RBCS (robot base coordinate system) and the FCS (flange coordinate system) in the measurement process, a comparatively general measurement and calibration method of the RBCS and the FCS is proposed, and the source of the robot terminal position error is classified into three aspects: positioning error of industrial RBCS, kinematics parameter error of manipulator, and positioning error of industrial robot end FCS. The robot position error model is established, and the relation equation of the robot end position error and the industrial robot model parameter error is deduced. By solving the equation, the parameter error identification and the supplementary results are obtained, and the method of compensating the error by using the robot joint angle is realized. The Leica laser tracker is used to verify the calibration method on ABB IRB120 industrial robot. The experimental results show that the calibration method can effectively enhance the APA of the robot.


Author(s):  
Zachary Baum

Purpose: Augmented reality overlay systems can be used to project a CT image directly onto a patient during procedures. They have been actively trialed for computer-guided procedures, however they have not become commonplace in practice due to restrictions of previous systems. Previous systems have not been handheld, and have had complicated calibration procedures. We put forward a handheld tablet-based system for assisting with needle interventions. Methods: The system consists of a tablet display and a 3-D printed reusable and customizable frame. A simple and accurate calibration method was designed to align the patient to the projected image. The entire system is tracked via camera, with respect to the patient, and the projected image is updated in real time as the system is moved around the region of interest. Results: The resulting system allowed for 0.99mm mean position error in the plane of the image, and a mean position error of 0.61mm out of the plane of the image. This accuracy was thought to be clinically acceptable for tool using computer-guidance in several procedures that involve musculoskeletal needle placements. Conclusion: Our calibration method was developed and tested using the designed handheld system. Our results illustrate the potential for the use of augmented reality handheld systems in computer-guided needle procedures. 


2022 ◽  
Vol 355 ◽  
pp. 01014
Author(s):  
Fuan Sun ◽  
Zheng Liu ◽  
Huifeng Liu

Normally, most researches on phase calibration of shipborne USB system focus on the means of phase calibration. This article starts with the research on the channel of the system. The composition of the channel is introduced, and the characteristics of the channel is analyzed. Taking the channel of the field effect amplifier front-end as the research object, a mathematical fitting algorithm is used to derive the functional relationship between the phase of the field effect amplifier front-end and the working frequency. The actual calibration data is used for simulation analysis to obtain the fitting order of the function. Combining the phase-frequency relationship of the field effect amplifier front-end and the microwave self-checking phase correction of the field effect amplifier back-end, a new phase calibration method is proposed.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 23111-23120 ◽  
Author(s):  
Yanbin Zou ◽  
Huaping Liu ◽  
Wei Xie ◽  
Qun Wan

Sign in / Sign up

Export Citation Format

Share Document