scholarly journals Representation of vector fields

2015 ◽  
Vol 3 (2) ◽  
pp. 73
Author(s):  
Alexander G. Ramm

<p>A simple proof is given for the explicit formula which allows one to recover a \(C^2\) – smooth vector field \(A=A(x)\) in \(\mathbb{R}^3\), decaying at infinity, from the knowledge of its \(\nabla \times A\) and \(\nabla \cdot A\). The representation of \(A\) as a sum of the gradient field and a divergence-free vector fields is derived from this formula. Similar results are obtained for a vector field in a bounded \(C^2\) - smooth domain.</p>

2018 ◽  
Vol 16 (1) ◽  
pp. 429-436 ◽  
Author(s):  
Manseob Lee

AbstractWe show that if a vector fieldXhas theC1robustly barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, if a genericC1-vector field has the barycenter property then it does not have singularities and it is Axiom A without cycles. Moreover, we apply the results to the divergence free vector fields. It is an extension of the results of the barycenter property for generic diffeomorphisms and volume preserving diffeomorphisms [1].


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 137 ◽  
Author(s):  
Sharief Deshmukh ◽  
Patrik Peska ◽  
Nasser Bin Turki

A unit geodesic vector field on a Riemannian manifold is a vector field whose integral curves are geodesics, or in other worlds have zero acceleration. A geodesic vector field on a Riemannian manifold is a smooth vector field with acceleration of each of its integral curves is proportional to velocity. In this paper, we show that the presence of a geodesic vector field on a Riemannian manifold influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using geodesic vector fields.


2007 ◽  
Vol 27 (5) ◽  
pp. 1399-1417 ◽  
Author(s):  
ALEXANDER ARBIETO ◽  
CARLOS MATHEUS

AbstractWe prove that in a compact manifold of dimension n≥2, C1+α volume-preserving diffeomorphisms that are robustly transitive in the C1-topology have a dominated splitting. Also we prove that for three-dimensional compact manifolds, an isolated robustly transitive invariant set for a divergence-free vector field cannot have a singularity. In particular, we prove that robustly transitive divergence-free vector fields in three-dimensional manifolds are Anosov. For this, we prove a ‘pasting’ lemma, which allows us to make perturbations in conservative systems.


Author(s):  
Emanuele Paolini ◽  
Eugene Stepanov

The scope of the paper is twofold. We show that for a large class of measurable vector fields in the sense of Weaver (i.e. derivations over the algebra of Lipschitz functions), called in the paper laminated, the notion of integral curves may be naturally defined and characterized (when appropriate) by an ordinary differential equation. We further show that for such vector fields the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure ‘flows along’ the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense.


2018 ◽  
Vol 18 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ju Tan ◽  
Shaoqiang Deng

AbstractIn this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.


2014 ◽  
Vol 24 (07) ◽  
pp. 1450090 ◽  
Author(s):  
Tiago de Carvalho ◽  
Durval José Tonon

In this paper, we are dealing with piecewise smooth vector fields in a 2D-manifold. In such a scenario, the main goal of this paper is to exhibit the homeomorphism that gives the topological equivalence between a codimension one piecewise smooth vector field and the respective C0-normal form.


2007 ◽  
Vol 25 (4) ◽  
pp. 971-987 ◽  
Author(s):  
J. De Keyser ◽  
F. Darrouzet ◽  
M. W. Dunlop ◽  
P. M. E. Décréau

Abstract. This paper describes a general-purpose algorithm for computing the gradients in space and time of a scalar field, a vector field, or a divergence-free vector field, from in situ measurements by one or more spacecraft. The algorithm provides total error estimates on the computed gradient, including the effects of measurement errors, the errors due to a lack of spatio-temporal homogeneity, and errors due to small-scale fluctuations. It also has the ability to diagnose the conditioning of the problem. Optimal use is made of the data, in terms of exploiting the maximum amount of information relative to the uncertainty on the data, by solving the problem in a weighted least-squares sense. The method is illustrated using Cluster magnetic field and electron density data to compute various gradients during a traversal of the inner magnetosphere. In particular, Cluster is shown to cross azimuthal density structure, and the existence of field-aligned currents in the plasmasphere is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document