scholarly journals Lyapunov-Krasovskii stability analysis of nonlinear integro-differential equation

2018 ◽  
Vol 7 (2) ◽  
pp. 53
Author(s):  
Prebo Jackreece

The purpose of this paper is to develop a qualitative stability analysis of a class of nonlinear integro-differential equation within the framework of Lyapunov-Krasovskii. We show that the existence of a Lyapunov-Krasovskii functional is a necessary and sufficient condition for the uniform asymptotic stability of the nonlinear Volterra integro-differential equations.

Author(s):  
R. Datko

SynopsisA necessary and sufficient condition is developed for determination of the uniform stability of a class of non-autonomous linear differential-difference equations. This condition is the analogue of the Liapunov criterion for linear ordinary differential equations.


Author(s):  
S. J. Bilchev ◽  
M. K. Grammatikopoulos ◽  
I. P. Stavroulakis

AbstractConsider the nth-order neutral differential equation where n ≥ 1, δ = ±1, I, K are initial segments of natural numbers, pi, τi, σk ∈ R and qk ≥ 0 for i ∈ I and k ∈ K. Then a necessary and sufficient condition for the oscillation of all solutions of (E) is that its characteristic equation has no real roots. The method of proof has the advantage that it results in easily verifiable sufficient conditions (in terms of the coefficients and the arguments only) for the oscillation of all solutionso of Equation (E).


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Xingao Zhu ◽  
Yuangong Sun

Reachable set bounding for homogeneous nonlinear systems with delay and disturbance is studied. By the usage of a new method for stability analysis of positive systems, an explicit necessary and sufficient condition is first derived to guarantee that all the states of positive homogeneous time-delay systems with degree p>1 converge asymptotically within a specific ball. Furthermore, the main result is extended to a class of nonlinear time variant systems. A numerical example is given to demonstrate the effectiveness of the obtained results.


Author(s):  
Robert Laister ◽  
Mikołaj Sierżęga

Abstract We derive a blow-up dichotomy for positive solutions of fractional semilinear heat equations on the whole space. That is, within a certain class of convex source terms, we establish a necessary and sufficient condition on the source for all positive solutions to become unbounded in finite time. Moreover, we show that this condition is equivalent to blow-up of all positive solutions of a closely-related scalar ordinary differential equation.


2014 ◽  
Vol 57 (3) ◽  
pp. 543-554
Author(s):  
JANNE HEITTOKANGAS ◽  
ATTE REIJONEN

AbstractIf A(z) belongs to the Bergman space , then the differential equation f″+A(z)f=0 is Blaschke-oscillatory, meaning that the zero sequence of every nontrivial solution satisfies the Blaschke condition. Conversely, if A(z) is analytic in the unit disc such that the differential equation is Blaschke-oscillatory, then A(z) almost belongs to . It is demonstrated that certain “nice” Blaschke sequences can be zero sequences of solutions in both cases when A ∈ or A ∉ . In addition, no condition regarding only the number of zeros of solutions is sufficient to guarantee that A ∈ .


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jinshu Chen

We aim to investigate the convergence of operators sequences acting on functionals of discrete-time normal martingales M. We first apply the 2D-Fock transform for operators from the testing functional space S(M) to the generalized functional space S⁎(M) and obtain a necessary and sufficient condition for such operators sequences to be strongly convergent. We then discuss the integration of these operator-valued functions. Finally, we apply the results obtained here and establish the existence and uniqueness of solution to quantum stochastic differential equations in terms of operators acting on functionals of discrete-time normal martingales M. And also we prove the continuity and continuous dependence on initial values of the solution.


1982 ◽  
Vol 5 (2) ◽  
pp. 305-309
Author(s):  
A. K. Bose

Given a fundamental matrixϕ(x)of ann-th order system of linear homogeneous differential equationsY′=A(x)Y, a necessary and sufficient condition for the existence of ak-dimensional(k≤n)periodic sub-space (of periodT) of the solution space of the above system is obtained in terms of the rank of the scalar matrixϕ(t)−ϕ(0).


Sign in / Sign up

Export Citation Format

Share Document