scholarly journals Piecewise Analytic Method (PAM) is a New Step in the Evolution of Solving Nonlinear Differential Equation

2019 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Tamer Abassy

In this paper, a new method is introduced for engineers and scientists which can be used for solving highly nonlinear differential equations. The method is called Piecewise Analytic Method (PAM). PAM is used to solve problems which other methods can't solve. The paper also shows how the accuracy and error can be controlled according to the needs.

2021 ◽  
Vol 21 (1) ◽  
pp. 5-14
Author(s):  
NAWAB KHAN ◽  
QAZI MAHMOOD UL HASSAN ◽  
EHSAN UL HAQ ◽  
M. YAQUB KHAN ◽  
KAMRAN AYUB ◽  
...  

This paper will use Lagrange parameter in Adomain decomposition method to suggest new method for solving nonlinear differential equation. This method will be highly order convergent. Also, this method will be compared with old existence method. At last, some numerical examples will be given to illustrate the efficiency of newly developed method.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


2005 ◽  
Vol 2005 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Cemil Tunç

We establish sufficient conditions under which all solutions of the third-order nonlinear differential equation x ⃛+ψ(x,x˙,x¨)x¨+f(x,x˙)=p(t,x,x˙,x¨) are bounded and converge to zero as t→∞.


2014 ◽  
Vol 548-549 ◽  
pp. 1007-1010
Author(s):  
Qing Zhu ◽  
Zhi Bin Ma

A new oscillation criterion is established for a certain class of second-order nonlinear differential equation x"(t)-b(t)x'(t)+c(t)g(x)=0, x"(t)+c(t)g(x)=0 that is different from most known ones. Some applications of the result obtained are also presented. Our results are sharper than some previous ones.


2001 ◽  
Vol 26 (7) ◽  
pp. 437-444
Author(s):  
Mahmoud M. El-Borai ◽  
Osama L. Moustafa ◽  
Fayez H. Michael

We study, the existence and uniqueness of the initial value problems in a Banach spaceEfor the abstract nonlinear differential equation(dn−1/dtn−1)(du/dt+Au)=B(t)u+f(t,W(t)), and consider the correct solution of this problem. We also give an application of the theory of partial differential equations.


2001 ◽  
Vol 32 (2) ◽  
pp. 95-102
Author(s):  
Jiang Jianchu

New oscillation and nonoscillation theorems are obtained for the second order nonlinear differential equation $$ (|u'(t)|^{\alpha -1} u'(t))' + p(t)|u(t)|^{\alpha -1} u(t) = 0 $$ where $ p(t) \in C [0, \infty) $ and $ p(t) \ge 0 $. Conditions only about the integrals of $ p(t) $ on every interval $ [2^n t_0, 2^{n+1} t_0] $ ($ n = 1, 2, \ldots $) for some fixed $ t_0 >0 $ are used in the results.


1993 ◽  
Vol 45 (5) ◽  
pp. 1094-1103 ◽  
Author(s):  
James S. W. Wong

AbstractConsider the second order nonlinear differential equationy" + a(t)f(y) = 0where a(t) ∈ C[0,∞),f(y) GC1 (-∞, ∞),ƒ'(y) ≥ 0 and yf(y) > 0 for y ≠ 0. Furthermore, f(y) also satisfies either a superlinear or a sublinear condition, which covers the prototype nonlinear function f(y) = |γ|γ sgny with γ > 1 and 0 < γ < 1 known as the Emden-Fowler case. The coefficient a(t) is allowed to be negative for arbitrarily large values of t. Oscillation criteria involving integral averages of a(t) due to Wintner, Hartman, and recently Butler, Erbe and Mingarelli for the linear equation are shown to remain valid for the general equation, subject to certain nonlinear conditions on f(y). In particular, these results are therefore valid for the Emden-Fowler equation.


2021 ◽  
Author(s):  
Gunawan Nugroho ◽  
Purwadi Agus Darwito ◽  
Ruri Agung Wahyuono ◽  
Murry Raditya

The simplest equations with variable coefficients are considered in this research. The purpose of this study is to extend the procedure for solving the nonlinear differential equation with variable coefficients. In this case, the generalized Riccati equation is solved and becomes a basis to tackle the nonlinear differential equations with variable coefficients. The method shows that Jacobi and Weierstrass equations can be rearranged to become Riccati equation. It is also important to highlight that the solving procedure also involves the reduction of higher order polynomials with examples of Korteweg de Vries and elliptic-like equations. The generalization of the method is also explained for the case of first order polynomial differential equation.


1987 ◽  
Vol 35 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Shaozhu Chen

In this paper we establish sufficient or necessary conditions for the nonlinear differential equation u″ + f (t, u) = 0 to have solutions which are asymptotic to lines with non-zero slopes and correct some formulations in theorems obtained by D.S. Cohen and J. Tong.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
Yazhou Tian ◽  
Fanwei Meng

The existence of nonoscillatory solutions of the higher-order nonlinear differential equation [r(t)(x(t)+P(t)x(t-τ))(n-1)]′+∑i=1mQi(t)fi(x(t-σi))=0,  t≥t0, where m≥1,n≥2 are integers, τ>0,  σi≥0,  r,P,Qi∈C([t0,∞),R),  fi∈C(R,R)  (i=1,2,…,m), is studied. Some new sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general Qi(t)  (i=1,2,…,m) which means that we allow oscillatory Qi(t)  (i=1,2,…,m). In particular, our results improve essentially and extend some known results in the recent references.


Sign in / Sign up

Export Citation Format

Share Document