scholarly journals On the Generalized Simplest Equations: Toward the Solution of Nonlinear Differential Equations with Variable Coefficients

2021 ◽  
Author(s):  
Gunawan Nugroho ◽  
Purwadi Agus Darwito ◽  
Ruri Agung Wahyuono ◽  
Murry Raditya

The simplest equations with variable coefficients are considered in this research. The purpose of this study is to extend the procedure for solving the nonlinear differential equation with variable coefficients. In this case, the generalized Riccati equation is solved and becomes a basis to tackle the nonlinear differential equations with variable coefficients. The method shows that Jacobi and Weierstrass equations can be rearranged to become Riccati equation. It is also important to highlight that the solving procedure also involves the reduction of higher order polynomials with examples of Korteweg de Vries and elliptic-like equations. The generalization of the method is also explained for the case of first order polynomial differential equation.

2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
Yazhou Tian ◽  
Fanwei Meng

The existence of nonoscillatory solutions of the higher-order nonlinear differential equation [r(t)(x(t)+P(t)x(t-τ))(n-1)]′+∑i=1mQi(t)fi(x(t-σi))=0,  t≥t0, where m≥1,n≥2 are integers, τ>0,  σi≥0,  r,P,Qi∈C([t0,∞),R),  fi∈C(R,R)  (i=1,2,…,m), is studied. Some new sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general Qi(t)  (i=1,2,…,m) which means that we allow oscillatory Qi(t)  (i=1,2,…,m). In particular, our results improve essentially and extend some known results in the recent references.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2005 ◽  
Vol 2005 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Cemil Tunç

We establish sufficient conditions under which all solutions of the third-order nonlinear differential equation x ⃛+ψ(x,x˙,x¨)x¨+f(x,x˙)=p(t,x,x˙,x¨) are bounded and converge to zero as t→∞.


2014 ◽  
Vol 548-549 ◽  
pp. 1007-1010
Author(s):  
Qing Zhu ◽  
Zhi Bin Ma

A new oscillation criterion is established for a certain class of second-order nonlinear differential equation x"(t)-b(t)x'(t)+c(t)g(x)=0, x"(t)+c(t)g(x)=0 that is different from most known ones. Some applications of the result obtained are also presented. Our results are sharper than some previous ones.


2014 ◽  
Vol 30 (3) ◽  
pp. 293-300
Author(s):  
J. DZURINA ◽  
◽  
B. BACULIKOVA ◽  

In the paper we offer oscillation criteria for even-order neutral differential equations, where z(t) = x(t) + p(t)x(τ(t)). Establishing a generalization of Philos and Staikos lemma, we introduce new comparison principles for reducing the examination of the properties of the higher order differential equation onto oscillation of the first order delay differential equations. The results obtained are easily verifiable.


Author(s):  
Krum Videnov

In this paper, the capabilities of the specialized software Wolfram Mathematica for investigating processes described with differential equations are discussed. The aim is to create procedures and algorithms in Mathematica environment for study and analysis of systems and processes using the Phase-plane method. The proposed algorithm has been experimented to evaluate a nonlinear differential equation of first order.


1998 ◽  
Vol 13 (21) ◽  
pp. 3601-3627 ◽  
Author(s):  
J. F. CARIÑENA ◽  
G. MARMO ◽  
J. NASARRE

Group theoretical methods are used to study some properties of the Riccati equation, which is the only differential equation admitting a nonlinear superposition principle. The Wei–Norman method is applied to obtain the associated differential equation in the group SL(2, ℝ). The superposition principle for first order differential equation systems and Lie–Scheffers theorem are also analyzed from this group theoretical perspective. Finally, the theory is applied in the solution of second order differential equations like time independent Schrödinger equation.


2001 ◽  
Vol 26 (7) ◽  
pp. 437-444
Author(s):  
Mahmoud M. El-Borai ◽  
Osama L. Moustafa ◽  
Fayez H. Michael

We study, the existence and uniqueness of the initial value problems in a Banach spaceEfor the abstract nonlinear differential equation(dn−1/dtn−1)(du/dt+Au)=B(t)u+f(t,W(t)), and consider the correct solution of this problem. We also give an application of the theory of partial differential equations.


2001 ◽  
Vol 32 (2) ◽  
pp. 95-102
Author(s):  
Jiang Jianchu

New oscillation and nonoscillation theorems are obtained for the second order nonlinear differential equation $$ (|u'(t)|^{\alpha -1} u'(t))' + p(t)|u(t)|^{\alpha -1} u(t) = 0 $$ where $ p(t) \in C [0, \infty) $ and $ p(t) \ge 0 $. Conditions only about the integrals of $ p(t) $ on every interval $ [2^n t_0, 2^{n+1} t_0] $ ($ n = 1, 2, \ldots $) for some fixed $ t_0 >0 $ are used in the results.


Sign in / Sign up

Export Citation Format

Share Document