Oscillation Criteria for Second Order Nonlinear Differential Equations Involving Integral Averages

1993 ◽  
Vol 45 (5) ◽  
pp. 1094-1103 ◽  
Author(s):  
James S. W. Wong

AbstractConsider the second order nonlinear differential equationy" + a(t)f(y) = 0where a(t) ∈ C[0,∞),f(y) GC1 (-∞, ∞),ƒ'(y) ≥ 0 and yf(y) > 0 for y ≠ 0. Furthermore, f(y) also satisfies either a superlinear or a sublinear condition, which covers the prototype nonlinear function f(y) = |γ|γ sgny with γ > 1 and 0 < γ < 1 known as the Emden-Fowler case. The coefficient a(t) is allowed to be negative for arbitrarily large values of t. Oscillation criteria involving integral averages of a(t) due to Wintner, Hartman, and recently Butler, Erbe and Mingarelli for the linear equation are shown to remain valid for the general equation, subject to certain nonlinear conditions on f(y). In particular, these results are therefore valid for the Emden-Fowler equation.

2014 ◽  
Vol 548-549 ◽  
pp. 1007-1010
Author(s):  
Qing Zhu ◽  
Zhi Bin Ma

A new oscillation criterion is established for a certain class of second-order nonlinear differential equation x"(t)-b(t)x'(t)+c(t)g(x)=0, x"(t)+c(t)g(x)=0 that is different from most known ones. Some applications of the result obtained are also presented. Our results are sharper than some previous ones.


2001 ◽  
Vol 32 (2) ◽  
pp. 95-102
Author(s):  
Jiang Jianchu

New oscillation and nonoscillation theorems are obtained for the second order nonlinear differential equation $$ (|u'(t)|^{\alpha -1} u'(t))' + p(t)|u(t)|^{\alpha -1} u(t) = 0 $$ where $ p(t) \in C [0, \infty) $ and $ p(t) \ge 0 $. Conditions only about the integrals of $ p(t) $ on every interval $ [2^n t_0, 2^{n+1} t_0] $ ($ n = 1, 2, \ldots $) for some fixed $ t_0 >0 $ are used in the results.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Shao ◽  
Fanwei Meng

Using the generalized variational principle and the Riccati technique, new oscillation criteria are established for the forced second-order nonlinear differential equation, which improves and generalizes some of the new results in literature.


2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
Hui-Zeng Qin ◽  
Yongsheng Ren

We present new oscillation criteria for the differential equation of the form , where , . Our research is different from most known ones in the sense that H function is not employed in our results, though Riccati's substitution and its generalized forms are used. Our criteria which are established under quite general assumptions are an extension for previous results. In particular, by taking , the above-mentioned equation can be reduced into the various types of equations concerned by people currently.


Author(s):  
Xin Zhao ◽  
Yanxia Hu

The generalized Weierstrass integrability of a class of second-order nonlinear differential equations is considered. The conditions of existence and the corresponding expressions of generalized Weierstrass inverse integrating factors of the second-order nonlinear differential equation are presented. The relationship between the generalized Weierstrass inverse integrating factors and the Weierstrass inverse integrating factors is given. Finally, as an application of the main results, a Kudryashov-Sinelshchikov equation for obtaining traveling wave solutions is considered.


Author(s):  
O. V. Zadorozhnaya ◽  
V. K. Kochetkov

The paper deals with treating some study methods of the equation integrability of a certain type that are little studied in the theory of differential equations. It is known that a significant part of the differential equations cannot be integrated. Then, to develop methods for their study is, certainly, of scientific interest. The obtained results, formulated as theorems and statements, are of scientific and practical interest because of their importance for applications in modern science.In the paper we present an alternative method for studying the integrability of both linear and nonlinear differential equations of the second order. An introduction of parameters allowed us to develop a study method for the integrability of ordinary differential equations of the second order. We also formulate the theorems describing some General conditions for the integrability of the second-order linear equation and consider special cases of integrability, which arise out of the above facts.Based on the obtained parameter method, some General conditions for the integrability of the nonlinear differential equation of the second order are given, and the consequences of these General conditions are indicated.We have obtained new results related to the construction and development of methods for studying the differential equation to which some types of differential equations are reduced and laid the foundations for a rigorous and systematic study of the introduced special nonlinear differential equation of the second order.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hongwei Shi ◽  
Yuzhen Bai

AbstractIn this paper, we present several new oscillation criteria for a second order nonlinear differential equation with mixed neutral terms of the form $$ \bigl(r(t) \bigl(z'(t)\bigr)^{\alpha }\bigr)'+q(t)x^{\beta } \bigl(\sigma (t)\bigr)=0,\quad t\geq t_{0}, $$(r(t)(z′(t))α)′+q(t)xβ(σ(t))=0,t≥t0, where $z(t)=x(t)+p_{1}(t)x(\tau (t))+p_{2}(t)x(\lambda (t))$z(t)=x(t)+p1(t)x(τ(t))+p2(t)x(λ(t)) and α, β are ratios of two positive odd integers. Our results improve and complement some well-known results which were published recently in the literature. Two examples are given to illustrate the efficiency of our results.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


1996 ◽  
Vol 48 (4) ◽  
pp. 871-886 ◽  
Author(s):  
Horng-Jaan Li ◽  
Wei-Ling Liu

AbstractSome oscillation criteria are given for the second order neutral delay differential equationwhere τ and σ are nonnegative constants, . These results generalize and improve some known results about both neutral and delay differential equations.


Sign in / Sign up

Export Citation Format

Share Document