scholarly journals Stability analysis of a mathematical model for awareness initiatives on registration of persons in Kenya

2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
ANN N. Mwambia ◽  
Mark O. Okongo ◽  
Gladys G. Njoroge

In this paper, we discuss stability analysis of a mathematical model of awareness initiatives in registration of persons in Kenya. Using Ordinary Differential Equations, a mathematical model to compare the efficacy of print media, electronic media and word-of-mouth media in disseminating registration information is developed. Positivity and boundedness of solutions is established to ensure that the model is mathematically meaningful. The Basic Reproduction number R0 is derived using the Next Generation Matrix. We present both awareness free equilibrium and the maximum awareness equilibrium. Stability analysis of the model shows that Awareness free equilibrium is both locally and globally asymptotically stable when R0 < 1 hence no spread of awareness and unstable when R0 > 1 while MAE is locally asymptotically stable when R0 > 1 indicating spread of information in the population.  

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Abayneh Kebede Fantaye ◽  
Zerihun Kinfe Birhanu

In this study, a deterministic mathematical model that explains the transmission dynamics of corruption is proposed and analyzed by considering social influence on honest individuals. Positivity and boundedness of solution of the model are proved and basic reproduction number R 0 is computed using the next-generation matrix method. The analysis shows that corruption-free equilibrium is locally and globally asymptotically stable whenever R 0 < 1 . Also, the endemic equilibrium point is locally and globally asymptotically stable whenever R 0 > 1 . Then, the model was extended to optimal control, and some numerical simulations with and without optimal control are also performed to verify the theoretical analysis using MATLAB. Numerical simulation of optimal control model shows that the prevention and punishment strategy is the most effective strategy to reduce the dynamic transmission of corruption.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pakwan Riyapan ◽  
Sherif Eneye Shuaib ◽  
Arthit Intarasit

In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S , exposed E , symptomatically infected I s , asymptomatically infected I a , quarantined Q , recovered R , and death D , respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as R cvd 19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if R cvd 19 < 1 . On the other hand, the global asymptotic stability of the endemic equilibrium occurs if R cvd 19 > 1 . The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-Feng Huo ◽  
Guang-Ming Qiu

A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction numberR0is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable ifR0≤1, and the system is uniformly persistence ifR0>1. Some numerical simulations are also given to explain our analytical results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse rate and increase the recovery rate.


Author(s):  
H. O. Nyaberi ◽  
D. M. Malonza

Cholera, a water-borne disease characterized by intense watery diarrhea, affects people in the regions with poor hygiene and untreated drinking water. This disease remains a menace to public health globally and it indicates inequity and lack of community development. In this research, SIQR-B mathematical model based on a system of ordinary differential equations is formulated to study the dynamics of cholera transmission with health education campaign and treatmentthrough quarantine as controls against epidemic in Kenya. The effective basic reproduction number is computed using the next generation matrix method. The equilibrium points of the model are determined and their stability is analysed. Results of stability analysis show that the disease free equilibrium is both locally and globally asymptotically stable R0 < 1 while the endemic equilibrium is both locally and globally asymptotically stable R0 > 1. Numerical simulation carried out using MATLAB software shows that when health education campaign is efficient, the number of cholera infected individuals decreases faster, implying that health education campaign is vital in controlling the spread of cholera disease.


Author(s):  
Mehdi Lotfi ◽  
Azizeh Jabbari ◽  
Hossein Kheiri

In this paper, we propose a mathematical model of tuberculosis with two treatments and exogenous re-infection, in which the treatment is effective for a number of infectious individuals and it fails for some other infectious individuals who are being treated. We show that the model exhibits the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists with a stable endemic equilibria when the related basic reproduction number is less than unity. Also, it is shown that under certain conditions the model cannot exhibit backward bifurcation. Furthermore, it is shown in the absence of re-infection, the backward bifurcation phenomenon does not exist, in which the disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. The global asymptotic stability of the endemic equilibrium, when the associated reproduction number is greater than unity, is established using the geometric approach. Numerical simulations are presented to illustrate our main results.


2021 ◽  
Vol 25 (9) ◽  
pp. 1661-1670
Author(s):  
A.A. Danhausa ◽  
E.E. Daniel ◽  
C.J. Shawulu ◽  
A.M. Nuhu ◽  
L. Philemon

Regardless of many decades of research, the widespread availability of a vaccine and more recently highly visible WHO efforts to promote a unified global control strategy, Tuberculosis remains a leading cause of infectious mortality. In this paper, a Mathematical Model for Tuberculosis Epidemic with Passive Immunity and Drug-Sensitivity is presented. We carried out analytical studies of the model where the population comprises of eight compartments: passively immune infants, susceptible, latently infected with DS-TB. The Disease Free Equilibrium (DFE) and the Endemic Equilibrium (EE) points were established. The next generation matrix method was used to obtain the reproduction number for drug sensitive (𝑅𝑜𝑠) Tuberculosis. We obtained the disease-free equilibrium for drug sensitive TB which is locally asymptotically stable when 𝑅𝑜𝑠 < 1 indicating that tuberculosis eradication is possible within the population. We also obtained the global stability of the disease-free equilibrium and results showed that the disease-free equilibrium point is globally asymptotically stable when 𝑅𝑜𝑠 ≤ 1 which indicates that tuberculosis naturally dies out.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Hamenyimana Emanuel Gervas ◽  
Nicholas Kwasi-Do Ohene Opoku ◽  
Shamsuddeen Ibrahim

Human African trypanosomiasis (HAT), commonly known as sleeping sickness, is a neglected tropical vector-borne disease caused by trypanosome protozoa. It is transmitted by bites of infected tsetse fly. In this paper, we first present the vector-host model which describes the general transmission dynamics of HAT. In the tsetse fly population, the HAT is modelled by three compartments, while in the human population, the HAT is modelled by four compartments. The next-generation matrix approach is used to derive the basic reproduction number, R0, and it is also proved that if R0≤1, the disease-free equilibrium is globally asymptotically stable, which means the disease dies out. The disease persists in the population if the value of R0>1. Furthermore, the optimal control model is determined by using the Pontryagin’s maximum principle, with control measures such as education, treatment, and insecticides used to optimize the objective function. The model simulations confirm that the use of the three control measures is very efficient and effective to eliminate HAT in Africa.


2021 ◽  
Vol 2106 (1) ◽  
pp. 012025
Author(s):  
S M Lestari ◽  
Y Yulida ◽  
A S Lestia ◽  
M A Karim

Abstract This research discussed the mathematical model of smoking behavior. The model will be analogous to an epidemic model which will be divided into several compartments/groups. This research aimed to explain the formation of a mathematical model of smoking behavior, to investigate the equilibrium point, the value of the basic reproduction number, to analyze the stability of the model, then to determine and interpret the numerical solutions using the fourth-order Runge-Kutta method. By the results of this research, a mathematical model of smoking behavior which consists of three compartments, namely the population of non-smokers, smokers and ex-smokers, was obtained. Based on the model formed the smoke-free equilibrium point and the smoker equilibrium point, then the basic reproduction number was also obtained using the next generation matrix. Furthermore, the result of the stability analysis of the smoker-free population was asymptotically stable provided that the basic reproduction number is less than one, while the population was asymptotically stable provided that the basic reproduction number is greater than one. The simulation of the model was presented to support the explanation of the stability analysis of the model using the fourth-order Runge-Kutta method based on the parameters that met the requirements of the stability analysis.


Author(s):  
Jane S. Musaili ◽  
Isaac Chepkwony

Rabies is a zoonotic viral disease that aects all mammals including human beings. Dogs are responsible for 99% of human rabies cases and the disease is always fatal once the symptoms appear. In Kenya the disease is still endemic despite the fact that there are ecient vaccines for controlling the disease. In this project, we developed SIRS mathematical model using a system of ordinary dierential equations from the model to study the transmission dynamics of rabies virusin dogs using public health education as a control strategy. The reproduction number R0 was calculated using the Next Generation Matrix. Both disease free and endemics equilibrium points were determined and their stability analysis performed. From the stability analysis results it was found out that the disease free equilibrium point is both locally and globally asymptotically stable when R0 < 1 and the endemic equilibrium point is both locally and globally asymptotically stable when R0 > 1. Numerical simulations done using Matlab indicated that education of the public on administration of both pre and post exposure vaccines to dogs and responsible dog ownership leads to a decrease in the numbers of rabies virus infected dogs which shows that public health education is an ecient means for controlling rabies.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Yakui Xue ◽  
Xiaohong Wang

Because the latent period and the infectious period of tuberculosis (TB) are very long, it is not reasonable to consider the time as constant. So this paper formulates a mathematical model that divides the latent period and the infectious period into n-stages. For a general n-stage stage progression (SP) model with bilinear incidence, we analyze its dynamic behavior. First, we give the basic reproduction numberR0. Moreover, ifR0≤1, the disease-free equilibriumP0is globally asymptotically stable and the disease always dies out. IfR0>1, the unique endemic equilibriumP∗is globally asymptotically stable and the disease persists at the endemic equilibrium.


Sign in / Sign up

Export Citation Format

Share Document