scholarly journals Mathematical Model and Analysis of Corruption Dynamics with Optimal Control

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Abayneh Kebede Fantaye ◽  
Zerihun Kinfe Birhanu

In this study, a deterministic mathematical model that explains the transmission dynamics of corruption is proposed and analyzed by considering social influence on honest individuals. Positivity and boundedness of solution of the model are proved and basic reproduction number R 0 is computed using the next-generation matrix method. The analysis shows that corruption-free equilibrium is locally and globally asymptotically stable whenever R 0 < 1 . Also, the endemic equilibrium point is locally and globally asymptotically stable whenever R 0 > 1 . Then, the model was extended to optimal control, and some numerical simulations with and without optimal control are also performed to verify the theoretical analysis using MATLAB. Numerical simulation of optimal control model shows that the prevention and punishment strategy is the most effective strategy to reduce the dynamic transmission of corruption.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pakwan Riyapan ◽  
Sherif Eneye Shuaib ◽  
Arthit Intarasit

In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S , exposed E , symptomatically infected I s , asymptomatically infected I a , quarantined Q , recovered R , and death D , respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as R cvd 19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if R cvd 19 < 1 . On the other hand, the global asymptotic stability of the endemic equilibrium occurs if R cvd 19 > 1 . The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.


2020 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
ANN N. Mwambia ◽  
Mark O. Okongo ◽  
Gladys G. Njoroge

In this paper, we discuss stability analysis of a mathematical model of awareness initiatives in registration of persons in Kenya. Using Ordinary Differential Equations, a mathematical model to compare the efficacy of print media, electronic media and word-of-mouth media in disseminating registration information is developed. Positivity and boundedness of solutions is established to ensure that the model is mathematically meaningful. The Basic Reproduction number R0 is derived using the Next Generation Matrix. We present both awareness free equilibrium and the maximum awareness equilibrium. Stability analysis of the model shows that Awareness free equilibrium is both locally and globally asymptotically stable when R0 < 1 hence no spread of awareness and unstable when R0 > 1 while MAE is locally asymptotically stable when R0 > 1 indicating spread of information in the population.  


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-Feng Huo ◽  
Guang-Ming Qiu

A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction numberR0is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable ifR0≤1, and the system is uniformly persistence ifR0>1. Some numerical simulations are also given to explain our analytical results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse rate and increase the recovery rate.


Author(s):  
H. O. Nyaberi ◽  
D. M. Malonza

Cholera, a water-borne disease characterized by intense watery diarrhea, affects people in the regions with poor hygiene and untreated drinking water. This disease remains a menace to public health globally and it indicates inequity and lack of community development. In this research, SIQR-B mathematical model based on a system of ordinary differential equations is formulated to study the dynamics of cholera transmission with health education campaign and treatmentthrough quarantine as controls against epidemic in Kenya. The effective basic reproduction number is computed using the next generation matrix method. The equilibrium points of the model are determined and their stability is analysed. Results of stability analysis show that the disease free equilibrium is both locally and globally asymptotically stable R0 < 1 while the endemic equilibrium is both locally and globally asymptotically stable R0 > 1. Numerical simulation carried out using MATLAB software shows that when health education campaign is efficient, the number of cholera infected individuals decreases faster, implying that health education campaign is vital in controlling the spread of cholera disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Achamyelesh Amare Aligaz ◽  
Justin Manango W. Munganga

In this paper we present a mathematical model for the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP) by considering antibiotic treatment and vaccination. The model is comprised of susceptible, vaccinated, exposed, infectious, persistently infected, and recovered compartments. We analyse the model by deriving a formula for the control reproduction number Rc and prove that, for Rc<1, the disease free equilibrium is globally asymptotically stable; thus CBPP dies out, whereas for Rc>1, the unique endemic equilibrium is globally asymptotically stable and hence the disease persists. Thus, Rc=1 acts as a sharp threshold between the disease dying out or causing an epidemic. As a result, the threshold of antibiotic treatment is αt⁎=0.1049. Thus, without using vaccination, more than 85.45% of the infectious cattle should receive antibiotic treatment or the period of infection should be reduced to less than 8.15 days to control the disease. Similarly, the threshold of vaccination is ρ⁎=0.0084. Therefore, we have to vaccinate at least 80% of susceptible cattle in less than 49.5 days, to control the disease. Using both vaccination and antibiotic treatment, the threshold value of vaccination depends on the rate of antibiotic treatment, αt, and is denoted by ραt. Hence, if 50% of infectious cattle receive antibiotic treatment, then at least 50% of susceptible cattle should get vaccination in less than 73.8 days in order to control the disease.


2018 ◽  
Vol 26 (01) ◽  
pp. 107-131 ◽  
Author(s):  
T. BERGE ◽  
M. CHAPWANYA ◽  
J. M.-S. LUBUMA ◽  
Y. A. TEREFE

A mathematical model presented in Berge T, Lubuma JM-S, Moremedi GM, Morris N Shava RK, A simple mathematical model for Ebola in Africa, J Biol Dyn 11(1): 42–74 (2016) for the transmission dynamics of Ebola virus is extended to incorporate vaccination and change of behavior for self-protection of susceptible individuals. In the new setting, it is shown that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number [Formula: see text] is less than or equal to unity and unstable when [Formula: see text]. In the latter case, the model system admits at least one endemic equilibrium point, which is locally asymptotically stable. Using the parameters relevant to the transmission dynamics of the Ebola virus disease, we give sensitivity analysis of the model. We show that the number of infectious individuals is much smaller than that obtained in the absence of any intervention. In the case of the mass action formulation with vaccination and education, we establish that the number of infectious individuals decreases as the intervention efforts increase. In the new formulation, apart from supporting the theory, numerical simulations of a nonstandard finite difference scheme that we have constructed suggests that the results on the decrease of the number of infectious individuals is valid.


2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point


Author(s):  
S. Bowong ◽  
A. Temgoua ◽  
Y. Malong ◽  
J. Mbang

AbstractThis paper deals with the mathematical analysis of a general class of epidemiological models with multiple infectious stages for the transmission dynamics of a communicable disease. We provide a theoretical study of the model. We derive the basic reproduction number $\mathcal R_0$ that determines the extinction and the persistence of the infection. We show that the disease-free equilibrium is globally asymptotically stable whenever $\mathcal R_0 \leq 1$, while when $\mathcal R_0 \gt 1$, the disease-free equilibrium is unstable and there exists a unique endemic equilibrium point which is globally asymptotically stable. A case study for tuberculosis (TB) is considered to numerically support the analytical results.


Author(s):  
Mehdi Lotfi ◽  
Azizeh Jabbari ◽  
Hossein Kheiri

In this paper, we propose a mathematical model of tuberculosis with two treatments and exogenous re-infection, in which the treatment is effective for a number of infectious individuals and it fails for some other infectious individuals who are being treated. We show that the model exhibits the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists with a stable endemic equilibria when the related basic reproduction number is less than unity. Also, it is shown that under certain conditions the model cannot exhibit backward bifurcation. Furthermore, it is shown in the absence of re-infection, the backward bifurcation phenomenon does not exist, in which the disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. The global asymptotic stability of the endemic equilibrium, when the associated reproduction number is greater than unity, is established using the geometric approach. Numerical simulations are presented to illustrate our main results.


2021 ◽  
Vol 25 (9) ◽  
pp. 1661-1670
Author(s):  
A.A. Danhausa ◽  
E.E. Daniel ◽  
C.J. Shawulu ◽  
A.M. Nuhu ◽  
L. Philemon

Regardless of many decades of research, the widespread availability of a vaccine and more recently highly visible WHO efforts to promote a unified global control strategy, Tuberculosis remains a leading cause of infectious mortality. In this paper, a Mathematical Model for Tuberculosis Epidemic with Passive Immunity and Drug-Sensitivity is presented. We carried out analytical studies of the model where the population comprises of eight compartments: passively immune infants, susceptible, latently infected with DS-TB. The Disease Free Equilibrium (DFE) and the Endemic Equilibrium (EE) points were established. The next generation matrix method was used to obtain the reproduction number for drug sensitive (𝑅𝑜𝑠) Tuberculosis. We obtained the disease-free equilibrium for drug sensitive TB which is locally asymptotically stable when 𝑅𝑜𝑠 < 1 indicating that tuberculosis eradication is possible within the population. We also obtained the global stability of the disease-free equilibrium and results showed that the disease-free equilibrium point is globally asymptotically stable when 𝑅𝑜𝑠 ≤ 1 which indicates that tuberculosis naturally dies out.


Sign in / Sign up

Export Citation Format

Share Document