scholarly journals UPFC based transmission line power load flow control under different operating methods

2017 ◽  
Vol 7 (1.1) ◽  
pp. 346
Author(s):  
K Lingaswamy ◽  
T Anil Kumar ◽  
G Hari Krishna ◽  
N Shiva Prasad

In this paper the methods to control operation of shunt and series inverters using power flow controller (UPFC) is analyzed with real power flow in power system transmission line. These operation mode using UPFC are executed to reduce Swaying in the control framework transport. The execution about every system may be resolved toward the predefined administrative control. Those arrangement What's more shunt converter working under four separate blending from claiming working modes may be used to ponder An example force framework organize. The line flow in MW oscillation damping is predicated with various modes of operations and verified same with MATLAB/ SIMULINK.

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


Author(s):  
A. Naveena ◽  
M.Venkateswara Rao

The equipments based on the power electronics have been improved under the name of Flexible Alternating Current Transmission Systems (FACTS) in the last years. Unified Power Flow Controller (UPFC) is the most widely used FACTS device to control the power flow and to optimize the system stability in the transmission line. UPFC is a FACTS devices that can control active and reactive power flow in transmission line by means of injection controllable series voltage to the transmission line. This paper proposes a new connection for a Unified Power Flow Controller (UPFC) to control the active and reactive power flow control in two sides of a transmission line independently and it regulates bus voltage in the same transmission line, furthermore it is possible to balance line current too. This connection of the UPFC will be called an center node UPFC (C_UPFC). It is one of the newest devices within the FACTS technology. The structure and capability of the C_UPFC is discussed and its control scheme is based on the d-q orthogonal coordinates. According to this, the performance of UPFC for several modes of operations using different control mechanisms based on Proportional-Integral (PI) and PID based controllers has been studied. The obtained simulation results from Matlab/simulink confirm the effective features.


Sign in / Sign up

Export Citation Format

Share Document