Improvement of Solar Energy System Under Partial Shading Conditions in Koneru Lakshmaiah Education Foundation

2018 ◽  
Vol 7 (1.8) ◽  
pp. 197
Author(s):  
B Bhargavi ◽  
P Linga Reddy

This paper consists of grid connected Solar photovoltaic (SPV) system. An output of SPV depends on the irradiation and temperature. Sometimes PV module is shaded due to nearby buildings, passing clouds etc. Power extracted from such partially shaded PV array is reduced. . The PV system at KLEF deemed to be university is considered. Total Harmonic Distortion (THD) and the output powers  are  computed using Matlab/Simulink using LC filter .These are compared with the actual values measured from the existing system . It is found that percentage of THD is reduced.  

2015 ◽  
Vol 16 (1) ◽  
pp. 15-21 ◽  
Author(s):  
B. Chitti Babu ◽  
Suresh Gurjar ◽  
Ashish Meher

Abstract Generally, the characteristics of photovoltaic (PV) array are largely affected by solar temperature, solar irradiance, shading patterns, array configuration and location of shading modules. Partial shading is due to moving clouds and shadows of nearby obstacles and can cause a significant degradation in the output of PV system. Hence, the characteristics of PV array get more multifaceted with multiple peaks. The ultimate aim of the paper is to analyze the performance of PV module during such adverse condition based on simplified two-diode model. To reduce the computational time, the simplified two-diode model has a photocurrent source in parallel with two ideal diodes. Only four parameters are required to be calculated from datasheet in order to simulate the model. Moreover, the performance of PV array is evaluated at different shaded patterns and it is found that the model has less computational time and gives accurate results.


The electrical power generation from solar photo voltaic arrays increases by reducing partial shading effect due to the deposition of dust in modules, shadow of nearby buildings, cloud coverage leads to mismatching power losses. This paper gives the detailed analysis of modeling, simulation and performance analysis of different 4x4 size PV array topologies under different irradiance levels and to extract output power of panels maximum by reducing the mismatching power losses. For this analysis, a comparative study of six PV array topologies are Series, Parallel, Series-Parallel, Total-Cross-Tied, Bridge Linked and Honey-Comb are considered under various shading conditions such as one module shading, one string shading, zigzag type partial shading and total PV array partially shaded cases. The performance of above six topologies are compare with mismatching power losses and fill-factor. For designing and simulation of different PV array configurations/topologies in MaTLab/Simulink, the LG Electronics LG215P1W PV module parameters are used in all PV modules.


Author(s):  
K. Burhanudin ◽  
N.A. Kamarzaman ◽  
A.A.A. Samat ◽  
A.I. Tajudin ◽  
S.S. Ramli ◽  
...  

Power-Voltage (P-V) curve and Current-Voltage (I-V) curve determine the performance of the PV system. In this work, the arrangements of the PV module were reconstructed by adding the number of PV module in 3 strings configuration from 5 to 45. This method enhance the performance of the PV system as it able to show the characteristic of the P-V and I-V curve during partial shading and maximum irradiance despite higher number of PV panel. This study focuses on improving the PV array configuration and simulation speed of the PV panel. The simulation of small size PV array is possible, but the problem lies when the number of string and PV module used increases. New PV array configuration is flexible and easy to add string and increase the number of PV module. PV array configuration was modeled using MATLAB/SIMULINK software.


2015 ◽  
Vol 785 ◽  
pp. 106-110
Author(s):  
M.N.M. Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim ◽  
Kamarulazhar Daud

An identification system of multiple-input single-output (MISO) model is developed in controlling dsPIC microcontroller of positive output buck-boost (POBB) converters for module mismatch condition of photovoltaic (PV) system. In particular, the possibility of the scheme is to resolve the mismatch losses from the PV module either during shading or mismatch module occurrences. The MPPT algorithm is simplified by identification approach of indirect incorporated with a simple incremental direct method to form a combined direct and indirect (CoDId) algorithms. Irregular consumption of solar irradiation on a PV module shall step-up or step down the voltage regarding to the desired DC output voltage of POBB converter. This optimized algorithm will ensure that the PV module to kept at maximum power point (MPP), preventing power loss during module mismatch incident in PV module especially during partial shading condition. The simulation and laboratory results for PV module of polycrystalline Mitsubishi PV-AE125MF5N indicate that the proposed model and development of PV system architecture performs well, while the efficiency up to 97.7% at critical of low solar irradiance level. The controlling signal is based on low-cost embedded microcontroller of dsPIC30F Digital Signal Control (DSC).


2021 ◽  
Vol 297 ◽  
pp. 01051
Author(s):  
Mohammed Agdam ◽  
Abdallah Asbayou ◽  
Mustapha Elyaqouti ◽  
Ahmed Ihlal ◽  
Khaled Assalaou

To respond to the increase in demand for electricity, the use of photovoltaics is growing considerably as it produces electrical energy without polluting the environment. In addition, to enhance the efficiency of photovoltaic modules, an MPPT algorithm is required to follow the maximum voltage and maximum current in the IV curve. This technique can be achieved by using a DC-DC converter. For this purpose, various MPPT techniques have been developed. The combination of MPPT and DC-DC converter is implemented using Matlab/Simulink and connected to a modelled PV module to validate the simulation.


2019 ◽  
Vol 6 (1) ◽  
pp. 125
Author(s):  
Gregorius Reza Dwi Nugroho ◽  
I Wayan Rinas ◽  
I Wayan Arta Wijaya

In the Electrical Engineering Study Program, Udayana University, a Solar Power Plant was installed with a power of 26.4 kWp, a Wind Power Plant with a power of 5 kWp and a Diesel Power Plant with a capacity of 20 kVA. The size of harmonics in the electric power system is called Total Harmonic Distortion (THD). THDi's research results at DH Electrical Engineering Building of Udayana University before the operation of Distributed Generation (DG) were that R phase was 9.91%, S phase was 10.86%, and T phase was 9.85%. THDi value after the operation of Distributed Generation, R phase was 16.05%, S phase was 17.53%, and T phase was 15.70%. THDi value with LC filter, R phase was 4.0%, S phase was 5.52% and T phase was 3.97%. THDv value before the operation of Distributed Generation, R phase was 0.08%, S phase was 0.48% and T phase was 0.47%. THDv value after the operation of Distributed Generation, R phase was 0.24%, S phase was 0.44% and T phase was 0.49%. THDv value with LC filter, R phase was 0.01%, S phase was 0.01% and T phase was 0.02%. The results of the research showed that losses before the operation of Distributed Generation were 115.53 Watts and the value of losses after the operation of Distributed Generation had increased to 130.07 Watts.


Author(s):  
Lunde Ardhenta ◽  
Wijono Wijono

Wind energy and solar energy are the prime energy sources which are being utilized for renewal energy. The performance of a photovoltaic (PV) array for solar energy is affected by temperature, irradiation, shading, and array configuration. Often, the PV arrays are shadowed, completely or partially, by the passing clouds, neighboring buildings and towers, trees, and utility and telephone poles. Under partially shaded conditions, the PV characteristics are more complex with multiple peaks, hence, it is very important to understand and predict the MPP under PSC in order to extract the maximum possible power. This paper presents the development of PV array simulator for studying the I–V and P–V characteristics of a PV array under a partial shading condition. It can also be used for developing and evaluating new maximum power point tracking techniques, for PV array with partially shaded conditions. It is observed that, for a given number of PV modules, the array configuration significantly affects the maximum available power under partially shaded conditions. This is another aspect to which the developed tool can be applied. The model has been experimentally validated and the usefulness of this research is highlighted with the help of several illustrations


2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Hadi Nabipour Afrouzi ◽  
Saeed Vahabi Mashak ◽  
Zulkurnain Abdul-Malek ◽  
Kamyar Mehranzamir ◽  
Behnam Salimi

Renewable energy plays an important role in the national energy policy especially in reducing greenhouse gas emissions. For a photovoltaic (PV) system, one important consideration is the cost of the system. One needs to select the best PV array from a range of selection, that is, the one which is the most efficient and with a best price. This article illustrates a method to compute the size and cost of a required PV array, and then after to compute the required battery for the case of a photovoltaic building in Malaysia. The computation is simulated using Matlab integrated with suitable mathematical equations. The generated current and power of the PV array are calculated for daily solar irradiation in Malaysia. The computation enables the user to quickly compute the initial cost needed to be spent if a given PV system is to be installed. A typical building requiring 12 kWh daily energy with 6 kW peak demand load was shown to need at least 114 solar modules at a cost of about RM53k. It is noted that the main cost of the whole PV system is mainly contributed by the cost of the chosen PV array. Hence, the right choice of a PV module is vital in achieving the minimum cost.


2014 ◽  
Vol 612 ◽  
pp. 71-76 ◽  
Author(s):  
Smita Pareek ◽  
Ratna Dahiya

The power generated by solar photovoltaic system depends on insolation, temperature and shading situation etc. These days’ solar PV arrays are mainly building integrated. Therefore PV array are often under partial shadow. The feature of these shadows can be either easy-to-predict (like neighbour’s chimney, nearby tree or neighbouring buildings) or difficult-to-predict (passing clouds, birds litter).Thus output power obtained by PV arrays decreases in a considerable manner. In this paper, output powers, currents and voltages for SP & TCT topologies are calculated for different patterns of easy-to-predict partial shading conditions on a 4×4 PV field.


Sign in / Sign up

Export Citation Format

Share Document