Solar Array and Battery Sizing for a Photovoltaic Building in Malaysia

2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Hadi Nabipour Afrouzi ◽  
Saeed Vahabi Mashak ◽  
Zulkurnain Abdul-Malek ◽  
Kamyar Mehranzamir ◽  
Behnam Salimi

Renewable energy plays an important role in the national energy policy especially in reducing greenhouse gas emissions. For a photovoltaic (PV) system, one important consideration is the cost of the system. One needs to select the best PV array from a range of selection, that is, the one which is the most efficient and with a best price. This article illustrates a method to compute the size and cost of a required PV array, and then after to compute the required battery for the case of a photovoltaic building in Malaysia. The computation is simulated using Matlab integrated with suitable mathematical equations. The generated current and power of the PV array are calculated for daily solar irradiation in Malaysia. The computation enables the user to quickly compute the initial cost needed to be spent if a given PV system is to be installed. A typical building requiring 12 kWh daily energy with 6 kW peak demand load was shown to need at least 114 solar modules at a cost of about RM53k. It is noted that the main cost of the whole PV system is mainly contributed by the cost of the chosen PV array. Hence, the right choice of a PV module is vital in achieving the minimum cost.

Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2015 ◽  
Vol 785 ◽  
pp. 106-110
Author(s):  
M.N.M. Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim ◽  
Kamarulazhar Daud

An identification system of multiple-input single-output (MISO) model is developed in controlling dsPIC microcontroller of positive output buck-boost (POBB) converters for module mismatch condition of photovoltaic (PV) system. In particular, the possibility of the scheme is to resolve the mismatch losses from the PV module either during shading or mismatch module occurrences. The MPPT algorithm is simplified by identification approach of indirect incorporated with a simple incremental direct method to form a combined direct and indirect (CoDId) algorithms. Irregular consumption of solar irradiation on a PV module shall step-up or step down the voltage regarding to the desired DC output voltage of POBB converter. This optimized algorithm will ensure that the PV module to kept at maximum power point (MPP), preventing power loss during module mismatch incident in PV module especially during partial shading condition. The simulation and laboratory results for PV module of polycrystalline Mitsubishi PV-AE125MF5N indicate that the proposed model and development of PV system architecture performs well, while the efficiency up to 97.7% at critical of low solar irradiance level. The controlling signal is based on low-cost embedded microcontroller of dsPIC30F Digital Signal Control (DSC).


2015 ◽  
Vol 16 (1) ◽  
pp. 15-21 ◽  
Author(s):  
B. Chitti Babu ◽  
Suresh Gurjar ◽  
Ashish Meher

Abstract Generally, the characteristics of photovoltaic (PV) array are largely affected by solar temperature, solar irradiance, shading patterns, array configuration and location of shading modules. Partial shading is due to moving clouds and shadows of nearby obstacles and can cause a significant degradation in the output of PV system. Hence, the characteristics of PV array get more multifaceted with multiple peaks. The ultimate aim of the paper is to analyze the performance of PV module during such adverse condition based on simplified two-diode model. To reduce the computational time, the simplified two-diode model has a photocurrent source in parallel with two ideal diodes. Only four parameters are required to be calculated from datasheet in order to simulate the model. Moreover, the performance of PV array is evaluated at different shaded patterns and it is found that the model has less computational time and gives accurate results.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Freddy Ordóñez ◽  
Carlos Morales ◽  
Jesús López-Villada ◽  
Santiago Vaca

Solar tracking is a major alternative to increase the electric output of a photovoltaic (PV) module, and therefore, improves the global energy collected by PV systems. Nonetheless, solar-tracking PV systems require more resources and energy than static systems. Additionally, the presence of cloudiness and shadows from near buildings may reduce the profitability of these systems. Therefore, their feasibility must be assessed in order to justify their application. In equatorial latitudes, the sun's movement through the sky is in the zenith East–West axis. It may be advantageous, since the best tilt in such latitudes is the horizontal. In these terms, the main objective of this research is to numerically assess the performance of a PV array with solar tracking and under typical operation conditions in equatorial latitudes. For this, the assessment of the solar resource in Quito was analyzed in first place. Then, the comparison between three solar arrays was studied to evaluate the feasibility of solar tracking (two-axes tracking, horizontal one-axis tracking, and horizontal fixed). Additionally, the impact of cloudiness and shadows in the system was analyzed. The results showed that the horizontal one-axis tracking is the most beneficial option for equatorial latitudes as the two-axes tracking system only surpasses the gains of the one-axis tracking marginally. Furthermore, the use of a strategy to place the PV modules horizontally in cloudy conditions seems to be marginally advantageous. Finally, the shadows created from neighboring buildings in the East and West of the system may reduce considerably the solar irradiation on the PV-array (not the ones in the north and south).


Author(s):  
G Vaddikasulu , Meneni Saigeetha

Maximum power point techniques (MPPT) are used in photovoltaic system to make full utilization of PV array output power. The output power of PV array is always changing with weather conditions i.e., solar irradiation and atmospheric temperature. PV cell generates power by converting sunlight into electricity. The electric power generated is proportional to solar radiation. PV cell can generate around 0.5 to 0.8 volts. During cloudy weather due to varying insolation levels the output of PV array varies. The MPPT is a process which tracks the maximum power from array and by increasing the duty cycle of the DC-DC boost converter, the output voltage of the system is increased. This paper presents the cuckoo mppt technique for PV system along with SMC controller methods in grid connected photovoltaic (PV) systems for optimizing the solar energy efficiency


Author(s):  
Siti Amely Jumaat ◽  
Adhwa Amsyar Syazwan Ab Majid ◽  
Chin Kim Gan ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
...  

This project aims to determine the potential of grid connected solar Photovoltaic (PV) implementation and project planning of solar PV System in school.  Generally, the educational institution used huge amount of electricity to operate so their monthly bills is expensive. Therefore, the project planning is necessary to determine the potential of solar PV system implementation. The project planning consists of the current electricity consumed by the school and the amount of 120W Monocrystalline PV module needed by them. The cost of project are determines to identify the initial cost of this project implementation. Lastly, analysis on the profit collected by SK Pintas Raya after 20 years of solar PV system implementation proved the importance of this project.


2020 ◽  
Vol 26 (4) ◽  
pp. 21-32
Author(s):  
Nibras Mahmood Obaid ◽  
Emad T. Hashim ◽  
Naseer K. Kasim

The performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 1986.4kWh/m2. The average power losses per day of array, system losses and overall losses were (1.38, 0.15, 1.53) kWh/kWp/day respectively. The average capacity factor and performance ratio per year were 18.4% and 75.5% respectively. These results highlighted the performance analyses of this PV solar system located in Baghdad city. The performance can be considered as good and significant comparing with other world PV solar stations.  


2021 ◽  
pp. 199-242
Author(s):  
Jean-Michel Johnston

This chapter opens with an illustration of the Prussian government’s use of telegraph networks to unite the German nation during the war with France in 1870 by ensuring the timely and ubiquitous distribution of news. Otto von Bismarck and Generalpostmeister Heinrich Stephan then sought to build upon this unifying conception of telegraphic communication by improving and homogenizing the new Kaiserreich’s network, but they soon faced obstacles from within and outside the state. On the one hand, the federal structure of the new empire granted Bavaria and Württemberg the right to manage their own networks. On the other hand, the increasingly global network upon which trade and finance depended, and the news cartel established between Havas, Reuters, and Wolffs Telegraphisches Büro limited the imperial administration’s ability to manage the cost and nature of information circulating on its lines. These issues, and particularly the economic crisis of 1873, led to conflicts in the Reichstag, where deputies openly questioned the technology’s capacity to ‘annihilate space’ and formed alliances based upon the sections of society which they believed should or should not possess an advantage in communication. At a local level, meanwhile, government efforts to build new, more imposing, post and telegraph buildings alongside subsidiary offices threatened the business community’s privileged position within the urban landscape. The distance and time involved in the transmission of telegrams came to define one’s local and social status—as shown vividly in the novels of Theodor Fontane in the early 1880s and in the popular press.


2018 ◽  
Vol 34 (2) ◽  
pp. 127-143
Author(s):  
Ngo Ngoc Thanh ◽  
Nguyen Phung Quang

Reconfiguration strategy is intended to minimize losses and increase efficiency of the photovoltaic (PV) system under non-homogeneous solar irradiation based on irradiance equalization. The reconfiguration system (RS) includes: irradiance equalization algorithms which is effective in the calculation to find optimal configuration; dynamic electrical scheme (DES) switching matrix which is controlled to obtain the optimal configuration for PV array. The recent publications focus on bringing out the algorithms with the aim to select the optimal connection configuration and control DES switching matrix. However, no published work has used Matlab-simulink to simulate RS operation. In this paper, the author uses the Matlab-simulink environment to simulate RS operation. Through results, the model demonstrates that with RS, the effectiveness of the PV array performance can rise by 10-50% under non-homogeneous solar irradiation.


Author(s):  
Touheed Khan ◽  
Mohammed Asim ◽  
Mohammad Saood Manzar ◽  
Md Ibrahim ◽  
Shaikh Sadaf Afzal Ahmed

<p><span lang="EN-US">This work proposes an adaptive filter based on a new least mean sixth control approach with incremental conductance method of MPP for 3-phase grid-incorporated photovoltaic (PV) system. The proposed system comprises a PV array, 3-phase DC to AC converter, maximum power point tracker (MPPT), three-phase electronic load, and a 3-phase grid. The combination of solar PV array and the voltage source converter (VSC) supplies power to the grid. The 3-phase inverter as a distribution static synchronous compensator (D-STATCOM) improves the quality of the system performance in case of zero solar irradiation. D-STATCOM also reduces total harmonic distortion (THD) in grid currents, improves power factor, and maintainsa constant voltage at the point of common coupling (PCC). The system modelling and simulation is achieved on MATLAB/Simulink. The proposed system performance has been found satisfactory and conform to IEEE-519 standards.</span></p>


Sign in / Sign up

Export Citation Format

Share Document