scholarly journals Stochastic voltage stability margin in unbalance feeder with fuzzy based distributed generation placement

2018 ◽  
Vol 7 (2.21) ◽  
pp. 53
Author(s):  
Jagdish Prasad Sharma ◽  
H Ravishankar Kamath

In this paper, the impact of distributed generation (DG) integration on worst stochastic voltage stability margin is investigated for a modified IEEE 37 node test system. This unbalance test system has voltage sensitive load model for industrial, commercial and residential consumers and load flow computed in MATLAB environment with 15 minutes metering time interval for a whole day. DG integration is based on fuzzy expert system and integrated between 35 to 73 period of metering time interval. The stochastic voltage stability margin for all phase are evaluated under three different DG operational scenarios and compared with results obtained in the base case. The cause and consequence of unbalance phenomena is also broadly discussed in detail. 

2015 ◽  
Vol 781 ◽  
pp. 288-291 ◽  
Author(s):  
Natakorn Thasnas ◽  
Apirat Siritaratiwat

This paper presents the study of static voltage stability margin enhancement using shunt capacitor, SVC and STATCOM. AC and DC representations of shunt compensation devices are used in the continuation power flow process in static voltage stability study. Various performance measures including PV curves, voltage profiles, and power losses are compared. Placement and sizing techniques of shunt compensation devices are proposed for loading margin enhancement. The study has been carried out on the IEEE 14 bus test system.


2017 ◽  
Vol 5 (10) ◽  
pp. 375-389
Author(s):  
K. Lenin

In this paper, Aeriform Nebula Algorithm (ANA) has been used for solving the optimal reactive power dispatch problem. Aeriform Nebula Algorithm (ANA) is stirred from the deeds of cloud. ANA imitate the creation behavior, modify behavior and expand deeds of cloud. The projected Aeriform Nebula Algorithm (ANA) has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the superior performance of the proposed Aeriform Nebula Algorithm (ANA) in reducing the real power loss and voltage stability has been enhanced.


2014 ◽  
Vol 960-961 ◽  
pp. 1124-1127
Author(s):  
Si Yu Li ◽  
Jia Dong Huang ◽  
Cui Ma

Nowadays, unbalanced loads or nonlinear loads produce a bad effect on the power quality of utility mains. Also, it is necessary for reactive power to be compensated because the most of industrial loads is inductive and make a lagging displacement power factor. Reactive power compensation utilizing STATCOM is one of the most important methods to improve power quality. In this paper, the technical feature of STATCOM is introduced and then a comparison with SVC is made. The effect of STATCOM on static voltage stability in power systems has been studied. Based on PSD-BPA software, effect of STATCOM is determined. Static voltage stability margin enhancement using STATCOM and SVC is compared in the modified IEEE 14-bus test system. Test results show very encouraging result.


Author(s):  
Carolina Cortez do Prado ◽  
Daniel Pinheiro Bernardon ◽  
Camilla Leimann Pires ◽  
Criciele Castro Martins ◽  
Felipe Cirolini Lucchese

2021 ◽  
Author(s):  
Ali Gholami-Rahimabadi ◽  
Hadi Razmi ◽  
Hasan Doagou-Mojarrad

Abstract One of the most effective corrective control strategies to prevent voltage collapse and instability is load shedding. In this paper, a multiple-deme parallel genetic algorithm (MDPGA) is used for a suitable design of load shedding. The load shedding algorithm is implemented when the voltage stability margin index of the power system is lower than a predefined value. In order to increase the computational speed, the voltage stability margin index is estimated by a modular neural network method in a fraction of a second. In addition, in order to use the exact values of the voltage stability margin index for neural network training, a simultaneous equilibrium tracing technique has been employed considering the detailed model of the components of the generating units such as the governor and the excitation system. In the proposed algorithm, the entire population is partitioned into several isolated subpopulations (demes) in which demes distributed in different processors and individuals may migrate occasionally from one subpopulation to another. The proposed technique has been tested on New England-39 bus test system and the obtained results indicate the efficiency of the proposed method.


2020 ◽  
Vol 5 (12) ◽  
pp. 275-290
Author(s):  
K. Lenin

This paper presents Viral Systems Algorithm (VSA) for solving optimal reactive power problem. VSA have proven to be very efficient when dealing with problems of high complexity. The virus infection expansion corresponds to the feasibility region exploration, and the optimum corresponds to the organism lowest fitness value. Many available algorithms usually present weaknesses and cannot guarantee the optimum output for the problem in a bounded time. Projected Viral Systems Algorithm (VSA) has been tested on standard IEEE 30 bus test system and simulation results show clearly about the superior performance of the proposed Viral Systems Algorithm (VSA) in reducing the real power loss and static voltage stability margin (SVSM) index has been enhanced.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Nilesh K. Patel ◽  
Bhavik N. Suthar ◽  
Jalpa Thakkar

AbstractThis paper presents a solution for the transmission congestion management considering voltage stability issues using optimal generation rescheduling. While practicing congestion management using optimization techniques, the control variables remain under their upper or lower limits but it may lead to the lowered level of voltage security after optimization. To counterbalance this adverse effect, a modified objective function has been used. The reactive power generation rescheduling and reactive support from capacitors have been incorporated along with active power generation rescheduling to manage congestion as well as to improve the network voltage stability margin. The Random Inertia Weight Particle Swarm Optimization (RANDIW-PSO) algorithm has been employed in this paper to obtain optimized solutions. The proposed methodology is tested on the New-England test system for different realistic scenarios. The results confirm a noteworthy decline in congestion cost along with the improvement in network voltage stability margin. Moreover, system performance has been improved in terms of system power losses, increased reactive power reserve at generators and voltage profile.


Sign in / Sign up

Export Citation Format

Share Document