scholarly journals A performance analysis of clustering based algorithms for the microarray gene expression data

2018 ◽  
Vol 7 (2.21) ◽  
pp. 201 ◽  
Author(s):  
K Yuvaraj ◽  
D Manjula

Current advancements in microarray technology permit simultaneous observing of the expression levels of huge number of genes over various time points. Microarrays have obtained amazing implication in the field of bioinformatics. It includes an ordered set of huge different Deoxyribonucleic Acid (DNA) sequences that can be used to measure both DNA as well as Ribonucleic Acid (RNA) dissimilarities. The Gene Expression (GE) summary aids in understanding the basic cause of gene activities, the growth of genes, determining recent disorders like cancer and as well analysing their molecular pharmacology. Clustering is a significant tool applied for analyzing such microarray gene expression data.  It has developed into a greatest part of gene expression analysis. Grouping the genes having identical expression patterns is known as gene clustering. A number of clustering algorithms have been applied for the analysis of microarray gene expression data. The aim of this paper is to analyze the precision level of the microarray data by using various clustering algorithms. 

Author(s):  
Qiang Zhao ◽  
Jianguo Sun

Statistical analysis of microarray gene expression data has recently attracted a great deal of attention. One problem of interest is to relate genes to survival outcomes of patients with the purpose of building regression models for the prediction of future patients' survival based on their gene expression data. For this, several authors have discussed the use of the proportional hazards or Cox model after reducing the dimension of the gene expression data. This paper presents a new approach to conduct the Cox survival analysis of microarray gene expression data with the focus on models' predictive ability. The method modifies the correlation principal component regression (Sun, 1995) to handle the censoring problem of survival data. The results based on simulated data and a set of publicly available data on diffuse large B-cell lymphoma show that the proposed method works well in terms of models' robustness and predictive ability in comparison with some existing partial least squares approaches. Also, the new approach is simpler and easy to implement.


Sign in / Sign up

Export Citation Format

Share Document