scholarly journals A Slotted Single Feed Circularly Polarized Microstrip Patch Antenna with Suppressed Surface Wave Losses for WLAN Applications

The circularly polarized microstrip antenna has been of great importance in WLAN applications. A circularly polarized slotted circular patch antenna with co-axial feed geometry has been designed to meet the requirements. The antenna designed has been slotted at several locations to make it radiate circularly polarized radiation. Two metallic cylindrical vias have been inserted near the two diametric ends of the slot to improve the realized gain of the antenna. The antenna structure is resonating at 6.4 GHz with 3dB axial ratio bandwidth of 200MHz and gain of 9.8dB has been observed.

2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Naw Khu Say Wah ◽  
Hla Myo Tun

This paper presents a short microstrip patch antenna and analyzes its characteristics in simulation and measured ways. The proposed antenna is meant to be used from 2.4 to 2.5 GHz at the resonant frequency of 2.45 GHz Industrial, Science, and Medical (ISM) spectrum. Besides, insert a diagonal slot in the main patch, and two cutting edges with V-slit gives the antenna to propagate a circular polarization pattern. The paper aims to start learning a simple C.P. patch antenna supported the basic concept of microstrip antenna theory. A single-feed C.P., truncated corners, and slit and slot methods are employed to model the antenna apart from its parametric study. The substrate material of the developed antenna is FR-4, and it's a relative permittivity of 4.4. The antenna incorporates a compact overall size of 0.389λ0 × 0.389λ0 × 0.013λ0, where λ0 is that the corresponding free-space wavelength at 2.45 GHz. FEKO has been used for not only designing the antenna model but also analyzing its performances. Simulated and measured results have reported that the antenna can work in ISM bands (2.42-2.5 GHz) with VSWR< 2, low realized gain, and the limited 3-dB axial ratio at 2.45 GHz.


2013 ◽  
Vol 347-350 ◽  
pp. 1786-1789
Author(s):  
Kang Ding ◽  
Tong Bin Yu ◽  
Dong Fang Guan ◽  
Cheng Peng

This paper proposes a novel stacked tri-band circularly polarized antenna which has three independent ports. To obtain tri-band operation, a stacked three layers of microstrip antenna working at different frequency is presented. Each of them is fed by dual feed probes. The simulated results show that the antenna can cover Compass Navigation Satellite System CNSS B3 1.268 GHz, L band 1.615 GHz and S band 2.49 GHz. The proposed antenna has achieved a bandwidth of 3.1%, 6.8% and 2.3% at each band, respectively. It exhibits small axial ratio under 3dB in three bands for the CNSS applications. Details of the proposed antenna design and results for the obtained tri-band circularly polarized performances are presented and discussed.


2014 ◽  
Vol 662 ◽  
pp. 243-246
Author(s):  
Shuang Zhao ◽  
Dian Ren Chen

A single array element circularly polarized microstrip patch antenna is analyzed based on the theory of cavity mode. Through studying the design of circularly polarized microstrip antenna array, a 96 elements circularly polarized microstrip antenna array is designed and it is optimized by using the Ansoft's HFSS software. After testing of the antenna, we can see that it provides a gain of 22.6dB and has a good axial ratio.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 168
Author(s):  
Madhukant Patel ◽  
Veerendra Singh Jadaun ◽  
Kanhiya Lal ◽  
Piyush Kuchhal

This paper presents design a High Gain Small Size Microstrip Patch Antenna for X-Band applications such as Moving target RADAR sensor, Motion detector, Microwave camera, Ground Penetration RADAR sensors, wall penetration scanners and many medical applications. Now we have to selected circular geometry of micro strip patch antenna because circular geometry overcomes edge effect of antenna. The proposed antenna is designed to operate for X-band at the centre frequency of 10 GHz. The proposed Circular patch antenna is compact and easy to body mount with a high efficiency. The compactness makes it a better choice as compare with other antenna in the X-band. The proposed antenna shows a very sharp return loss of -46 dB at 10 GHz having narrow pattern with a good gain of 4.7 dBi. This enables its use in high directional applications. The paper represents the designing steps, and the simulation result obtained. The software used here for this circular shaped microstrip antenna is IE3D. Various parameters such as gain, power, radiation pattern, and S11 of the antenna are mentioned.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ke Zhang ◽  
Changrong Liu ◽  
Xueguan Liu ◽  
Huiping Guo ◽  
Xinmi Yang

A compact circularly polarized antenna operating at 915 MHz industrial, scientific, and medical (ISM) band for biomedical implantable applications is presented and experimentally measured. The proposed antenna can be miniaturized to a large extent with the compact size of 15 × 15 × 1.27 mm3 by means of loading patches to a ring-shaped microstrip patch antenna. An impedance bandwidth of 10.6% (865–962 MHz) for reflection coefficient less than −10 dB can be obtained. Meanwhile, the simulated 3 dB axial-ratio (AR) bandwidth reaches 14 MHz. Finally, the optimized design was fabricated and tested, and the measured results agree well with simulated results.


2021 ◽  
Vol 11 (19) ◽  
pp. 8869
Author(s):  
Manzoor Elahi ◽  
Son Trinh-Van ◽  
Youngoo Yang ◽  
Kang-Yoon Lee ◽  
Keum-Cheol Hwang

In this article, a high gain and compact 4 × 4 circularly polarized microstrip patch antenna array is reported for the data transmission of the next-generation small satellite. The radiating element of the circularly polarized antenna array is realized by the conventional model of the patch with truncated corners. A compact two-stage sequential rotational phase feeding is adopted that broadens the operating bandwidth of the 4 × 4 array. A small stub is embedded in the sequential rotational feed, which results in better performance in terms of the S-parameters and sequential phases at the output ports than sequential rotational feed without open stub. A prototype of the array is fabricated and measured. Fulfilling the application requirements of the next-generation small satellites, the array has the left-handed circularly polarized gain of more than 12 dBic with the axial ratio level below 1.5 dB in the ±10∘ angular space with respect to the broadside direction for the whole bandwidth from 8.05 GHz to 8.25 GHz. Moreover, the left-handed circularly polarized gain varies from 15 to 15.5 dBic in the desired band. The radiation patterns are measured; both the co- and X-pol are validated.


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 348
Author(s):  
J Premalatha ◽  
D Sheela ◽  
M Abinaya

Reconfigurable antennas provide a possible solution to solve the related problems using the ability to switch frequency, patterns and polarization. This paper represents a possible application in wireless communication using reconfigurable Microstrip patch antenna. The dielectric substrate of proposed circular Microstrip patch antenna is fabricated with FR 4 epoxy and patch design 40x40x1.6mm. This work provides a methodology to design reconfigurable antennas with PIN diode switch. The frequency reconfiguration achieved by PIN diodes At the range of 3 GHZ to 6.9 GHZ the frequency reconfigurability  is realized. To resonate the antenna at various frequencies PIN diode is used. Simulation of Ansoft HFSS software is used to compute the gain, axial ratio, radiation pattern, and return loss of proposed antenna. The structure of circular patch antenna achieves an enhanced wide bandwidth. The results show a better frequency reconfiguration.  


This article focuses on designing a single-feed circularly polarized equilateral triangular microstrip patch antenna. The axial ratio bandwidth of the antenna is around 190 MHz. The antenna has been etched at specific locations for achieving circular polarization. The suppression of surface waves is also being focused upon for gain enhancement. The array of cylindrical metallic pins is embedded near the radiating side of the patch antenna. The gain enhancement of around 3.23 dB is observed. The antenna is designed for use in satellite communications.


Sign in / Sign up

Export Citation Format

Share Document