scholarly journals Analysis of Performance on Circular Patch Antenna Based on Different Feeding Techniques

2018 ◽  
Vol 7 (4.1) ◽  
pp. 81
Author(s):  
Saidatul Hamidah Abd Hamid ◽  
Goh Chin Hock ◽  
M. T. Ali

This paper presents a simulation and analysis of a circular patch antenna with different feeding techniques. The objectives of this analysis are to design the microstrip circular patch antennas using five types of feedings techniques which are stepped feed, inset feed, coaxial feed, aperture coupled feed, and proximity feed, to analyze and compares the performance of the antenna design. Performance characteristics of the antenna such as return loss S11 parameter <-10dB, directivity, gain, bandwidth, side lobe level, beam width, and voltage standing wave ratio (VSWR)  parameters of each of the feeding methods designs are obtained and compared. 

This paper presented the analysis of element in designing a micro strip patch antenna. A single element of the circular patch antenna and 1x2 array elements of circular patch antennas were simulated, fabricated, measured, analyzed, and discussed in this work. Array configuration study is the essence of this research. In order to improve the performances of an antenna, the implementation of array configuration is one of the techniques in designing the patch antenna. Based on the results, it has been verified that an array configuration technique works in enhances and improves the patch antenna performances. This paper also discussed the fabrication process involves and comparison of performances between simulation and measurement.


Author(s):  
Prof. Romi Morzelona

The exhaustive evaluation and analysis of aperture oriented antennas for different dimensions at two different frequencies (1800 MHz and 2.4 GHz) is presented in this paper. Design and comparison of the antennas for their performance is done through MATLAB. It is inferred that the circular aperture antenna has 95% higher directivity than rectangular aperture antenna. In addition, for the circular aperture antenna HPBW is 0.2849 degrees and for rectangular aperture HPBW is 1.0143 degrees. Also, circular patch antenna has less side lobe power than that of rectangular aperture antenna.


Author(s):  
Minal Kimmatkar ◽  
P. T. Karule ◽  
P. L. Zade ◽  
P. S. Ashtankar

In this paper, Ultra wideband planar circular patch and half circular ring patch antennas are proposed. These newly simulated structures are proposed for fabrication. The antennas are suitable for operating frequency of 7.5 GHz. It is shown that return loss of the both the antennas at 7.5 GHz is better than -10 dB. The VSWR obtained is less than 2. The half ring patch antenna is found to have the compact size and more bandwidth as that of circular patch antenna. HFSS11 is used for the simulation. From HFSS11 simulations, dimensions of antennas are chosen for better performance. Details of the proposed antenna design and measured results are presented in this paper


In modern world, communication systems requires development of low cost, minimal weight, and low profile antennas which are capable of maintaining high performance over wide range of frequencies. Patch antenna is one such antenna which fulfills the demands of current communication systems. The widely used microstrip patch antennas are rectangular patch antennas. This paper presenting the application of binary coded Genetic Algorithm (BGA) which is applied to the rectangular patch microstrip antenna with uniform linear arrays. The fitness function of GA is maximum reduction in peak side lobe level of the radiation pattern of the antenna with maximum reduction in the side lobe level and also achieved the minimum possible null to null beam width, the resultant radiation patterns for both before GA and after GA of microstrip array are compared. The radiation patterns are presented for 20,50,100 number of elements. All the simulated results are obtained by using MATLAB software.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Md. Ababil Hossain ◽  
Md. Saimoom Ferdous ◽  
Shah Mahmud Hasan Chowdhury ◽  
Md. Abdul Matin

Novel design of a dual band microstrip circular patch antenna loaded with ENG (εnegative) metamaterial has been shown in the first section. Using ENG metamaterial instead of the conventional dielectric, unconventional TMδ10(1<δ<2) mode was produced to yield a dual band performance. Optimized parameters such as permittivity (ε1) and filling ratio (η) of metamaterials were selected with the aid of a MATLAB based parameter optimization algorithm, developed for all these sort of patch antennas. In the second section, a dual band circular patch antenna loaded with MNG (µ negative) metamaterial has been reported. An unconventional modified TMδ10(0<δ<1) mode has been produced along with conventional TM110mode due to using MNG metamaterial. Here also the optimum values of permeability (µ1) and filling ratio (η) for these sorts of patch antennas have been calculated from a MATLAB based parameter optimization algorithm. Both the proposed antennas provide good and resonance and satisfactory radiation performances (directivity, radiation efficiency, and gain) with a dual band performance.


Author(s):  
Saidulu V.

This paper studies the effect of dielectric cover layer thickness on circular microstrip patch antenna parameters such as gain, bandwidth, beam-width, radiation patterns, return loss and VSWR. The proposed antenna is designed with 2.4GHz frequency in S-Band region. This operating frequency useful in ISM band applications. Circular patch antenna is designed with cavity model analysis and simulated using HFSS simulation software (Electromagnetic simulator). The coaxial probe fed is used for antenna design. In this paper the effect of dielectric cover layer on antenna parameters studied experimentally and comparing their performance characteristics. The simulation results shows that the antenna without dielectric cover layer obtained gain is 4.11dB and antenna with dielectric cover the gain is reduced to 2.87dB to 5.88dB based on thickness of the dielectric cover layer. The antenna bandwidth obtained without dielectric cover is 3% and with dielectric cover its bandwidth is reduced from 0.012GHz to 0.052GHz based on thickness of the cover layer effect. Similarly other parameters are investigated and compared. This proposed circular patch antenna is used in wireless and Wi-Fi applications.


Sign in / Sign up

Export Citation Format

Share Document