scholarly journals Fundamental physics and the fine-structure constant

2017 ◽  
Vol 5 (2) ◽  
pp. 46 ◽  
Author(s):  
Michael Sherbon

From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.

2018 ◽  
Author(s):  
Michael A. Sherbon

From the exponential function of Euler's equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.


2009 ◽  
Vol 5 (H15) ◽  
pp. 317-317
Author(s):  
P. Petitjean ◽  
P. Noterdaeme ◽  
R. Srianand ◽  
C. Ledoux ◽  
A. Ivanchik ◽  
...  

AbstractIt has been realised in the last few years that strong constraints on the time-variations of dimensionless fundamental constants of physics can be derived at any redshift from QSO absorption line systems. Variations of the fine structure constant, α, the proton-to-electron mass ratio, μ, or the combination, x=α2gp/μ, where gp is the proton gyromagnetic factor, have been constrained. However, for the latter two constants, the number of lines of sight where these measurements can be performed is limited. In particular the number of known molecular and 21 cm absorbers is small. Our group has started several surveys to search for these systems. Here is a summary of some of the characteristics of these absorbers that can be used to find these systems.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2008 ◽  
Vol 23 (32) ◽  
pp. 2711-2725 ◽  
Author(s):  
NISSIM KANEKAR

Comparisons between the redshifts of spectral lines from cosmologically-distant galaxies can be used to probe temporal changes in low-energy fundamental constants like the fine structure constant and the proton–electron mass ratio. Here, we review the results from, and the advantages and disadvantages of, the best techniques using this approach, before focussing on a new method, based on conjugate satellite OH lines, that appears to be less affected by systematic effects and hence holds much promise for the future.


2018 ◽  
Author(s):  
Michael A. Sherbon

After a brief review of the golden ratio in history and our previous exposition of the fine-structure constant and equations with the exponential function, the fine-structure constant is studied in the context of other research calculating the fine-structure constant from the golden ratio geometry of the hydrogen atom. This research is extended and the fine-structure constant is then calculated in powers of the golden ratio to an accuracy consistent with the most recent publications. The mathematical constants associated with the golden ratio are also involved in both the calculation of the fine-structure constant and the proton-electron mass ratio. These constants are included in symbolic geometry of historical relevance in the science of the ancients.


1994 ◽  
Vol 159 ◽  
pp. 361-362
Author(s):  
D.A. Varshalovich ◽  
A.Y. Potekhin

Constraints on possible variation rate of the fine-structure constant, , and the electron-proton mass ratio , over cosmological time scales are obtained from analyses of quasar spectroscopic data.


2009 ◽  
Vol 87 (1) ◽  
pp. 25-33 ◽  
Author(s):  
V V Flambaum ◽  
V A Dzuba

The search for variation of the fundamental constants such as the fine-structure constant α (α = e2/hc) and the ratios of fundamental masses (for example, electron-to-proton mass ratio μ = me/mp) is reviewed. Strong emphasis is given to establishing the relationships between the change in the measured frequencies of atomic, molecular, or nuclear transitions and the corresponding change of the fundamental constants. Transitions in which the sensitivity of the frequency change to the variation of the fine-structure constant is strongly enhanced are discussed and most recent experimental results are presented. Most attention is given to the use of atomic, molecular, and nuclear transitions in the study of quasar absorption spectra and in atomic clock experiments.PACS Nos.: 31.25.Eb, 31.25.Jf


2019 ◽  
Vol 16 (1) ◽  
pp. 362-368
Author(s):  
Michael A. Sherbon

The golden ratio is found to be related to the fine-structure constant, which determines the strength of the electromagnetic interaction. The golden ratio and classical harmonic proportions with quartic equations give an approximate value for the inverse fine-structure constant the same as that discovered previously in the geometry of the hydrogen atom. With the former golden ratio results, relationships are also shown between the four fundamental forces of nature: electromagnetism, the weak force, the strong force, and the force of gravitation.


2007 ◽  
Vol 75 (4) ◽  
Author(s):  
Takeshi Chiba ◽  
Tatsuo Kobayashi ◽  
Masahide Yamaguchi ◽  
Jun’ichi Yokoyama

Sign in / Sign up

Export Citation Format

Share Document