scholarly journals Search for variation of the fundamental constants in atomic, molecular, and nuclear spectra

2009 ◽  
Vol 87 (1) ◽  
pp. 25-33 ◽  
Author(s):  
V V Flambaum ◽  
V A Dzuba

The search for variation of the fundamental constants such as the fine-structure constant α (α = e2/hc) and the ratios of fundamental masses (for example, electron-to-proton mass ratio μ = me/mp) is reviewed. Strong emphasis is given to establishing the relationships between the change in the measured frequencies of atomic, molecular, or nuclear transitions and the corresponding change of the fundamental constants. Transitions in which the sensitivity of the frequency change to the variation of the fine-structure constant is strongly enhanced are discussed and most recent experimental results are presented. Most attention is given to the use of atomic, molecular, and nuclear transitions in the study of quasar absorption spectra and in atomic clock experiments.PACS Nos.: 31.25.Eb, 31.25.Jf

1994 ◽  
Vol 159 ◽  
pp. 361-362
Author(s):  
D.A. Varshalovich ◽  
A.Y. Potekhin

Constraints on possible variation rate of the fine-structure constant, , and the electron-proton mass ratio , over cosmological time scales are obtained from analyses of quasar spectroscopic data.


2017 ◽  
Vol 5 (2) ◽  
pp. 46 ◽  
Author(s):  
Michael Sherbon

From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 157 ◽  
Author(s):  
McCullen Sandora

How good is our universe at making habitable planets? The answer to this depends on which factors are important for life: Does a planet need to be Earth mass? Does it need to be inside the temperate zone? are systems with hot Jupiters habitable? Here, we adopt different stances on the importance of each of these criteria to determine their effects on the probabilities of measuring the observed values of several physical constants. We find that the presence of planets is a generic feature throughout the multiverse, and for the most part conditioning on their particular properties does not alter our conclusions much. We find conflict with multiverse expectations if planetary size is important and it is found to be uncorrelated with stellar mass, or the mass distribution is too steep. The existence of a temperate circumstellar zone places tight lower bounds on the fine structure constant and electron to proton mass ratio.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 149 ◽  
Author(s):  
McCullen Sandora

In a multiverse setting, we expect to be situated in a universe that is exceptionally good at producing life. Though the conditions for what life needs to arise and thrive are currently unknown, many will be tested in the coming decades. Here we investigate several different habitability criteria, and their influence on multiverse expectations: Does complex life need photosynthesis? Is there a minimum timescale necessary for development? Can life arise on tidally locked planets? Are convective stars habitable? Variously adopting different stances on each of these criteria can alter whether our observed values of the fine structure constant, the electron to proton mass ratio, and the strength of gravity are typical to high significance. This serves as a way of generating predictions for the requirements of life that can be tested with future observations, any of which could falsify the multiverse scenario.


2010 ◽  
Vol 19 (14) ◽  
pp. 2289-2294 ◽  
Author(s):  
ADAM MOSS ◽  
ALI NARIMANI ◽  
DOUGLAS SCOTT

It is possible that fundamental constants may not be constants at all. There is a generally accepted view that one can only talk about variations of dimensionless quantities, such as the fine structure constant α e ≡ e2/4πϵ0ℏc. However, constraints on the strength of gravity tend to focus on G itself, which is problematic. We stress that G needs to be multiplied by the square of a mass, and hence, for example, one should be constraining [Formula: see text], where m p is the proton mass. Failure to focus on such dimensionless quantities makes it difficult to interpret the physical dependence of constraints on the variation of G in many published studies. A thought-experiment involving talking to observers in another universe about the values of physical constants may be useful for distinguishing what is genuinely measurable from what is merely part of our particular system of units.


2007 ◽  
Vol 22 (27) ◽  
pp. 4937-4950 ◽  
Author(s):  
V. V. FLAMBAUM

Review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses (Higgs vacuum) is presented. The results from Big Bang nucleosynthesis, quasar absorption spectra, and Oklo natural nuclear reactor data give us the space-time variation on the Universe lifetime scale. Comparison of different atomic clocks gives us the present time variation. Assuming linear variation with time we can compare different results. The best limit on the variation of the electron-to-proton mass ratio μ = me/Mp and Xe = me/ΛQCD follows from the quasar absorption spectra:1[Formula: see text]. A combination of this result and the atomic clock results2,3 gives the best limt on variation of [Formula: see text]. The Oklo natural reactor gives the best limit on the variation of Xs = ms/ΛQCD where ms is the strange quark mass:4,5[Formula: see text]. Note that the Oklo data can not give us any limit on the variation of α since the effect of α there is much smaller than the effect of Xs and should be neglected. Huge enhancement of the relative variation effects happens in transitions between close atomic, molecular and nuclear energy levels. We suggest several new cases where the levels are very narrow. Large enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance. How changing physical constants and violation of local position invariance may occur? Light scalar fields very naturally appear in modern cosmological models, affecting parameters of the Standard Model (e.g. α). Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (about 5 billion years ago), from matter to dark energy domination. Massive bodies (stars or galaxies) can also affect physical constants. They have large scalar charge S proportional to number of particles which produces a Coulomb-like scalar field U = S/r. This leads to a variation of the fundamental constants proportional to the gravitational potential, e.g. δα/α = kαδ(GM/rc2). We compare different manifestations of this effect. The strongest limits6kα + 0.17ke = (-3.5 ±6) × 10-7 and kα + 0.13kq = (-1 ± 17) × 10-7 are obtained from the measurements of dependence of atomic frequencies on the distance from Sun2,7 (the distance varies due to the ellipticity of the Earth's orbit).


2018 ◽  
Author(s):  
Michael A. Sherbon

From the exponential function of Euler's equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.


2010 ◽  
Vol 81 (4) ◽  
Author(s):  
Rollin A. King ◽  
Ali Siddiqi ◽  
Wesley D. Allen ◽  
Henry F. Schaefer

2009 ◽  
Vol 5 (H15) ◽  
pp. 317-317
Author(s):  
P. Petitjean ◽  
P. Noterdaeme ◽  
R. Srianand ◽  
C. Ledoux ◽  
A. Ivanchik ◽  
...  

AbstractIt has been realised in the last few years that strong constraints on the time-variations of dimensionless fundamental constants of physics can be derived at any redshift from QSO absorption line systems. Variations of the fine structure constant, α, the proton-to-electron mass ratio, μ, or the combination, x=α2gp/μ, where gp is the proton gyromagnetic factor, have been constrained. However, for the latter two constants, the number of lines of sight where these measurements can be performed is limited. In particular the number of known molecular and 21 cm absorbers is small. Our group has started several surveys to search for these systems. Here is a summary of some of the characteristics of these absorbers that can be used to find these systems.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


Sign in / Sign up

Export Citation Format

Share Document