strong force
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 59)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Author(s):  
xianjin wu

Abstract This article assumes that the elementary particle is a magnetic pole field formed by the interaction of positive and negative magnetic poles and believes that gravity, electromagnetic forces, strong forces and weak forces are all produced by the interaction of positive and negative magnetic poles. The collision of the high-energy elementary particles appears as a strong force, the decay of the high-energy elementary particles appears as a weak force, the cohesive force of the high-energy elementary particle magnetic pole field (the gravitational field) to its magnetic pole is gravity, and the spin force of the high-energy elementary particle magnetic pole field in the external field (the gravitational field) is the electromagnetic force. This article discusses a high-energy proton-antiproton collision experiment based on the interaction of positive and negative magnetic poles and reveals the production mechanism of protonium, tauium, muonium, positronium, three generations of leptons and neutrinos, and the final state. This article explains the unification of the strong force, weak force, electromagnetic force and gravity with unified phase field theory and tests this theory by the ATLAS and CMS experimental data at the LHC. The data of the ATLAS and CMS experiments at the LHC are completely consistent with the calculated data of the phase field curvature tensor equation. Differential geometric variables are covariant with physical variables. The Lagrangian function of Einstein's mass-energy equation, the Lagrangian function of the Schrodinger particle differential motion wave function based on the theory of relativity, the Lagrangian density of the Young-Mills gauge field equation, and the high-energy elementary particle phase difference momentum-energy tensor of the curvature tensor equation are completely consistent in the high-energy proton-antiproton collision experiment. These results fully prove that the unified phase field theory is more in line with the physical reality of the high-energy proton-antiproton collision experiment.


2022 ◽  
Author(s):  
xianjin wu

Abstract This article assumes that the elementary particle is a magnetic pole field formed by the interaction of positive and negative magnetic poles and believes that gravity, electromagnetic forces, strong forces and weak forces are all produced by the interaction of positive and negative magnetic poles. The collision of the high-energy elementary particles appears as a strong force, the decay of the high-energy elementary particles appears as a weak force, the cohesive force of the high-energy elementary particle magnetic pole field (the gravitational field) to its magnetic pole is gravity, and the spin force of the high-energy elementary particle magnetic pole field in the external field (the gravitational field) is the electromagnetic force. This article discusses a high-energy proton-antiproton collision experiment based on the interaction of positive and negative magnetic poles and reveals the production mechanism of protonium, tauium, muonium, positronium, three generations of leptons and neutrinos, and the final state. This article explains the unification of the strong force, weak force, electromagnetic force and gravity with unified phase field theory and tests this theory by the ATLAS and CMS experimental data at the LHC. The data of the ATLAS and CMS experiments at the LHC are completely consistent with the calculated data of the phase field curvature tensor equation. Differential geometric variables are covariant with physical variables. The Lagrangian function of Einstein's mass-energy equation, the Lagrangian function of the Schrodinger particle differential motion wave function based on the theory of relativity, the Lagrangian density of the Young-Mills gauge field equation, and the high-energy elementary particle phase difference momentum-energy tensor of the curvature tensor equation are completely consistent in the high-energy proton-antiproton collision experiment. These results fully prove that the unified phase field theory is more in line with the physical reality of the high-energy proton-antiproton collision experiment.


2022 ◽  
Author(s):  
xianjin wu

Abstract This article assumes that the elementary particle is a magnetic pole field formed by the interaction of positive and negative magnetic poles and believes that gravity, electromagnetic forces, strong forces and weak forces are all produced by the interaction of positive and negative magnetic poles. The collision of the high-energy elementary particles appears as a strong force, the decay of the high-energy elementary particles appears as a weak force, the cohesive force of the high-energy elementary particle magnetic pole field (the gravitational field) to its magnetic pole is gravity, and the spin force of the high-energy elementary particle magnetic pole field in the external field (the gravitational field) is the electromagnetic force. This article discusses a high-energy proton-antiproton collision experiment based on the interaction of positive and negative magnetic poles and reveals the production mechanism of protonium, tauium, muonium, positronium, three generations of leptons and neutrinos, and the final state. This article explains the unification of the strong force, weak force, electromagnetic force and gravity with unified phase field theory and tests this theory by the ATLAS and CMS experimental data at the LHC. The data of the ATLAS and CMS experiments at the LHC are completely consistent with the calculated data of the phase field curvature tensor equation. Differential geometric variables are covariant with physical variables. The Lagrangian function of Einstein's mass-energy equation, the Lagrangian function of the Schrodinger particle differential motion wave function based on the theory of relativity, the Lagrangian density of the Young-Mills gauge field equation, and the planet phase difference momentum-energy tensor of the curvature tensor equation are completely consistent in the high-energy proton-antiproton collision experiment. These results fully prove that the unified phase field theory is more in line with the physical reality of the high-energy proton-antiproton collision experiment.


2021 ◽  
Author(s):  
xianjin wu

Abstract This article assumes that the elementary particle is a magnetic poles field formed by the interaction of positive and negative magnetic pole, believes that the gravity, the electromagnetic force, the strong force and the weak force are all produced by the interaction of positive and negative magnetic pole. The collision of the high-energy elementary particles appears as a strong force, and the decay of the high-energy elementary particles appears as a weak force, the cohesive force of the high-energy elementary particle magnetic pole field (the gravitational field) to its magnetic pole is the gravity, and the spin force of the high-energy elementary particle magnetic pole field in the external field (the gravitational field) is the electromagnetic force. This article discuss the high-energy proton-antiproton collision experiment based on the interaction of positive and negative magnetic pole, reveals the production mechanism of the protonium, tauium, muonium, positronium, three generation of leptons and neutrinos, and final state. This article explains unify of the strong force, weak force, electromagnetic force and gravity with unified phase field theory, and tested with the data of ATLAS and CMS experiment at the LHC. The data of ATLAS and CMS experiment at the LHC is completely consistent with the calculated data of the phase field curvature tensor equation; Differential geometric variables are covariant with physical variables; The Lagrangian function of Einstein's mass-energy equation, the Lagrangian function of Schrodinger particle differential motion wave function based on the theory of relativity, the Lagrangian density of Young-Mills gauge field equation, and the planets phase difference momentum-energy tensor of the curvature tensor equation is completely consistent in the high-energy proton-antiproton collision experiment. These fully prove that the unified phase field theory is more in line with the physical reality of the high-energy proton-antiproton collision experiment.


Significance Comparisons with two formerly fast-growing Asian neighbours, Japan and South Korea, suggest that China will continue to slow for another decade. Analysis of global growth trends over 50 years points to a strong force of ‘regression to the mean’, meaning that continued high-speed growth is statistically unlikely. Impacts Continued Chinese economic slowing will reduce global demand for resources such as iron ore and coal. Achieving productivity growth will require deepening reforms to increase the role of the market, the private sector and competition. World Bank economists emphasise that imposing stricter financial discipline is a key step to enhancing market-based productivity gains.


2021 ◽  
Vol 34 (4) ◽  
pp. 517-528
Author(s):  
Olivier Pignard

The theory of the dynamic medium of reference has already been presented in several articles [Pignard, Phys. Essays 32, 422 (2019); 33, 395 (2020); 34, 61 (2021); 34, 279 (2021)], and in particular in Pignard, Phys. Essays 32, 422 (2019). The article [Pignard, Phys. Essays 34, 279 (2021)] gives an explanation and mathematical developments of the gravitational acceleration from atomic nuclei of a massive body. General relativity considers a massive body, like the Earth or the Sun, globally, macroscopically, simply as an object of mass M (which curves space‐time). However, when one goes into details, this mass M is made up of atoms which are themselves mainly made up of nuclei of nucleons (if we neglect the mass of electrons in comparison of that of the nucleus). Thus, it is mainly the nuclei of a massive body that create the force of gravity! The dynamic medium of reference theory determines the gravitational acceleration microscopically by taking into account all the atomic nuclei that make up a massive body [Pignard, Phys. Essays 32, 422 (2019)]. This creates a strong link between gravity and the nuclear domain. This article goes further with the description of a model of the atomic nucleus. This makes it possible to establish that the strong force or nuclear force, which ensures the cohesion of the nucleus, is due to the strong acceleration of the flux of the medium which is a vector average of the flux of gravitons. This gives an expression of the nuclear force similar to the force of gravity but with a constant K ≈ 1031 m s−2, much higher than the gravitational constant G. This article shows that the functioning, the mechanism of the nucleus, makes it possible to explain the nuclear force and also to find the gravitational acceleration. From there, it is deduced that the photons are deflected by the strong acceleration due to an atom nucleus. They are also slowed down by an atom nucleus which creates a delay in their travel time which we call the nuclear time delay of light. Finally, an experiment is proposed to verify the phenomenon of nuclear deflection of light and the nuclear time delay of light.


Author(s):  
Daniel Roman

The article develops ideas on the need to form motivation for autonomous students’ learning, a process aimed at the system of self-regulatory mechanisms, determined by motivating factors, focused on the study of needs and behaviors. Motivation being a strong force to stimulate the individual creativity of students, expresses, in fact, a set of motives: needs, interests, trends, intentions and ideals, levers triggering the motivation for learning, which allow the achievement of actions in line with vocational training objectives, designed in a social context. Explicitly and implicitly, the motivation for independent study is a dynamic landmark of the professional empowerment process.


2021 ◽  
Author(s):  
jinjun Cheng

The "zero result" of Michelson Morley's experiment was not enough to deny the existence of a fifth element---ether, as conceived by Aristotle. Hubble's explanation of the Doppler effect of the systematic cosmic the red shift was incomplete and needed to be introduced into the ether.The physical significance of universal gravitation constant reveals the possibility of the existence of ether. After much thought and logical reasoning, there is good reason to think that the ether is negative energy, stream of consciousness, and space itself, it combines with photons to build elementary particles, elementary elements, everything in the universe, including ourselves. In addition, it is feasible to explain the causes of gravitation, electromagnetic force, strong force and weak force from the perspective of the ether, which seems to be easier for us to understand. The most tragic conclusion is that the universe was created out of nothing and will eventually return to nothing.


Géotechnique ◽  
2021 ◽  
pp. 1-38
Author(s):  
Yuxuan Wen ◽  
Yida Zhang

The critical state of granular soils needs to make proper reference to the fabric that develops at critical state. This study substantializes the concept of critical fabric surface (CFS) which attracts the fabric state of granular soils upon continuous shearing. Numerical experiments using discrete element modelling (DEM) are conducted under drained and undrained conditions with varies Lode angles. Fabric tensors are defined based on the normals of all contacts and of the strong force contacts only. Both tensors have their spherical component preserved such that the information of coordination number can be carried. A separate series of low confining pressure undrained test are conducted to probe the fabric states of soils in the post-liquefaction regime. Finally, a single CFS spanning across a wide range of coordination numbers is established based on the DEM results. The CFS concept provides an important reference state for soils sheared to large strains in complementary to the traditionally defined critical state. It provides a new perspective to interpret and model the mechanics of granular soils in both pre- and post- liquefied regimes. The evolution of fabric shows that the normalized strong-contact fabric evolves linearly with the stress ratio even for liquefied or anisotropically consolidated soils.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Dan Bao ◽  
Chengyu Zhou ◽  
Lei Wang ◽  
Peng Zhang ◽  
Zhenfu Jia ◽  
...  

Abstract Lost circulation often occurs in fractured formations, which was a main technological problem during drilling. Conventional lost circulation material (LCM) was often used to form a plugging zone to prevent fluid loss during drilling. The formed seal was a granular material system composed of LCMs. This paper presented the physical mechanism of the force chain within the plugging zone. The seal performance is related to the properties of LCMs. A device for testing seal performance of LCMs with long fracture was developed. The effects of LCM performance on seal integrity were investigated using a plugging device with long fracture. The results showed that the wide particle size distribution (PSD) of LCMs tended to form a strong force chain network structure within the sealing zone. Increasing the stiffness and roughness of LCMs resulted in higher breaking pressure. The addition of fiber with high length-diameter ratio could improve the shear strength of the sealing zone and form a strong force chain network structure, and it can reduce fluid loss.


Sign in / Sign up

Export Citation Format

Share Document