Priority Scheduling Algorithm for Traffic in a LTE-based Defence Mesh Network Incorporating Centralised Scheduling Architecture

2017 ◽  
Vol 67 (5) ◽  
pp. 581
Author(s):  
Sidharth Shukla ◽  
Vimal Bhatia

<p>Wireless mesh networks (WMN) are the networks of future and can operate on multiple protocols ranging from WiFi, WiMax to long term evolution (LTE). As a recent trend defence networks are incorporating off-the-shelf, state of the art commercial protocols to enhance the capability of their networks. LTE is one such commercially available protocol which is easy to deploy and provide high data rate which can be ideally implemented in WMN for defence networks. To enable these high data rate services LTE-based defence mesh networks (DMN) are the requirement of the day and future. However, LTE-based DMN are prone to congestion at times of active operations or full-fledged war. The congestion scenarios may lead to LTE packet loss. Hence, it is pertinent that these networks amalgamate information grooming algorithms to alleviate the throughput of the network in peak hour conditions. An efficient priority scheduling algorithm based on class of service prioritisation, data rate consumption and location of origin of traffic in the DMN is proposed. The simulations demonstrate that by incorporating the proposed priority scheduling algorithm, the overall packet loss of priority packets in the DMN reduces substantially.</p>

2012 ◽  
Vol 3 (3) ◽  
pp. 368-374
Author(s):  
Usha Kumari ◽  
Udai Shankar

IEEE 802.16 based wireless mesh networks (WMNs) are a promising broadband access solution to support flexibility, cost effectiveness and fast deployment of the fourth generation infrastructure based wireless networks. Reducing the time for channel establishment is critical for low latency/interactive Applications. According to IEEE 802.16 MAC protocol, there are three scheduling algorithms for assigning TDMA slots to each network node: centralized and distributed the distributed is further divided into two operational modes coordinated distributed and uncoordinated distributed. In coordinated distributed scheduling algorithm, network nodes have to transmit scheduling message in order to inform other nodes about their transfer schedule. In this paper a new approach is proposed to improve coordinated distributed scheduling efficiency in IEEE 802.16 mesh mode, with respect to three parameter Throughput, Average end to end delay and Normalized Overhead. For evaluating the proposed networks efficiency, several extensive simulations are performed in various network configurations and the most important system parameters which affect the network performance are analyzed


Author(s):  
Maharazu Mamman ◽  
Zurina Mohd Hanapi ◽  
Azizol Abdullah ◽  
Abdullah Muhammed

2012 ◽  
Vol 2 (3) ◽  
pp. 134-141
Author(s):  
Rajinder Singh ◽  
Er. Nidhi Bhalla

A wireless mesh network (WMN) is a communicationnetwork made up of radio nodes organized in a meshtopology. Wireless mesh network often consists of meshclients, mesh routers and gateways. A wireless Mesh networkuses multi-hop communication. Due to multi-hop architectureand wireless nature, Mesh networks are vulnerable to varioustypes of Denial of Services attack. It suffers from Packetdropping at Routing layer. Client nodes are unable to getservices from gateway nodes, hence network gets down. ThePaper emphasis on the developing of a path protocol when theminimun possible packet dropp occurs in wireless meshnetworks. Due to packet droping occurrences the networkperformance degrades. In the work, we have evaluated thePerformance of WMN under packet dropping on the basis oftheir throughput and Data packet loss.


2020 ◽  
Vol 7 (1) ◽  
pp. 50-53
Author(s):  
Kumaravel K ◽  
Sengaliappan M

In wireless mesh network the nodes are dynamically self-organized and self- configured networks create a changing topology and keep a mesh connectivity to offer Internet access to the users. The shortest path problem is one of the most fundamental problems in networking. This problem can be solved by manytechniques and algorithm. In this paper we find the shortest path by using the fittest nodes in the network. By using the fittest node we can send the packets to the destination without packet loss, delay in packets.Average end to end delay is decreased by increasing bandwidth and the results are shown.


2014 ◽  
Vol 696 ◽  
pp. 215-221
Author(s):  
Wen Qi Fan ◽  
Sheng Chun Huang ◽  
Ji Bo Wei

Wireless Mesh Networks (WMN) is distributed broadband wireless network architecture with characteristic of high throughput and high data rate. The quantity of research being conducted in this area has dramatically increased recently. Medium Access Control (MAC) is the key technology to exploit the multi-hop advantage of WMN. This paper introduces two major research topic of MAC design in WMN, the topology control and link scheduling. A survey of recent research on these topics is given in detail.


1998 ◽  
Author(s):  
Robert Kerczewski ◽  
Duc Ngo ◽  
Diepchi Tran ◽  
Quang Tran ◽  
Brian Kachmar

Author(s):  
John D. Terry ◽  
Juha Heiskala ◽  
Victor Stolpman ◽  
Majid Fozunbal

Sign in / Sign up

Export Citation Format

Share Document