scholarly journals Sugarcane Classification Using Spectral Signature and Object-Based Image Analysis (OBIA) in LiDAR Data Sets

Author(s):  
Marife Kung Villareal ◽  
Alejandro Fernandez Tongco
2019 ◽  
Author(s):  
Stephen B. DeLong ◽  
◽  
Zachary Engle ◽  
Morena Hammer ◽  
Whitney M. DeLong ◽  
...  

2019 ◽  
Vol 23 (1) ◽  
pp. 80-93 ◽  
Author(s):  
Kellie A. Uyeda ◽  
Kelsey K. Warkentin ◽  
Douglas A. Stow ◽  
John F. O'Leary ◽  
Rachel A. Snavely ◽  
...  

Author(s):  
T. Kavzoglu ◽  
M. Yildiz

Opening new possibilities for research, very high resolution (VHR) imagery acquired by recent commercial satellites and aerial systems requires advanced approaches and techniques that can handle large volume of data with high local variance. Delineation of land use/cover information from VHR images is a hot research topic in remote sensing. In recent years, object-based image analysis (OBIA) has become a popular solution for image analysis tasks as it considers shape, texture and content information associated with the image objects. The most important stage of OBIA is the image segmentation process applied prior to classification. Determination of optimal segmentation parameters is of crucial importance for the performance of the selected classifier. In this study, effectiveness and applicability of the segmentation method in relation to its parameters was analysed using two VHR images, an aerial photo and a Quickbird-2 image. Multi-resolution segmentation technique was employed with its optimal parameters of scale, shape and compactness that were defined after an extensive trail process on the data sets. Nearest neighbour classifier was applied on the segmented images, and then the accuracy assessment was applied. Results show that segmentation parameters have a direct effect on the classification accuracy, and low values of scale-shape combinations produce the highest classification accuracies. Also, compactness parameter was found to be having minimal effect on the construction of image objects, hence it can be set to a constant value in image classification.


2021 ◽  
Vol 193 (2) ◽  
Author(s):  
Jens Oldeland ◽  
Rasmus Revermann ◽  
Jona Luther-Mosebach ◽  
Tillmann Buttschardt ◽  
Jan R. K. Lehmann

AbstractPlant species that negatively affect their environment by encroachment require constant management and monitoring through field surveys. Drones have been suggested to support field surveyors allowing more accurate mapping with just-in-time aerial imagery. Furthermore, object-based image analysis tools could increase the accuracy of species maps. However, only few studies compare species distribution maps resulting from traditional field surveys and object-based image analysis using drone imagery. We acquired drone imagery for a saltmarsh area (18 ha) on the Hallig Nordstrandischmoor (Germany) with patches of Elymus athericus, a tall grass which encroaches higher parts of saltmarshes. A field survey was conducted afterwards using the drone orthoimagery as a baseline. We used object-based image analysis (OBIA) to segment CIR imagery into polygons which were classified into eight land cover classes. Finally, we compared polygons of the field-based and OBIA-based maps visually and for location, area, and overlap before and after post-processing. OBIA-based classification yielded good results (kappa = 0.937) and agreed in general with the field-based maps (field = 6.29 ha, drone = 6.22 ha with E. athericus dominance). Post-processing revealed 0.31 ha of misclassified polygons, which were often related to water runnels or shadows, leaving 5.91 ha of E. athericus cover. Overlap of both polygon maps was only 70% resulting from many small patches identified where E. athericus was absent. In sum, drones can greatly support field surveys in monitoring of plant species by allowing for accurate species maps and just-in-time captured very-high-resolution imagery.


Sign in / Sign up

Export Citation Format

Share Document