Nanoporous Carbon Sponge as the Anode Materials for Lithium Ion Batteries

2012 ◽  
Vol 15 (4) ◽  
pp. 233-236
Author(s):  
Lianna Dang ◽  
Qina Sa ◽  
Zhangfeng Zheng ◽  
Yan Wang ◽  
Shenqiang Ren

Lithium ion battery is the choice for future generations of portable electronics and hybrid and electric vehicles due to its high energy density, power density and long cycle life compared to other battery technologies. However, current graphite anode limits its application due to the low energy density derived from layered graphitic structure and low rate capability due to the slow diffusion of Li ion in graphite. In this study, a simple and versatile approach was developed to generate nanoporous carbon sponge using the combination of hard templating and etching reaction. The electrochemical properties have been tested with these novel anode materials, which showed remarkable electrochemical performance and cycling stability. Therefore, the nanoporous carbon sponge is promising to be used as the anode materials for next generation lithium ion batteries requiring high energy density and power density.

2019 ◽  
Vol 7 (5) ◽  
pp. 2165-2171 ◽  
Author(s):  
Xingshuai Lv ◽  
Wei Wei ◽  
Baibiao Huang ◽  
Ying Dai

Siligraphenes including g-SiC2 and g-SiC3 can be promising candidates as anode materials for lithium-ion batteries.


2020 ◽  
Vol 4 (9) ◽  
pp. 4625-4636
Author(s):  
Orapim Namsar ◽  
Thanaphat Autthawong ◽  
Viratchara Laokawee ◽  
Ruttapol Boonprachai ◽  
Mitsutaka Haruta ◽  
...  

Novel anode materials for lithium-ion batteries, nanocomposites of Sn (or SnO2) and SiO2 with graphene-based sheets (GO, rGO and NrGO), were synthesized by a facile and low-cost technique. The capacity of all composites was relatively high as compared to traditional graphite.


2019 ◽  
Vol 7 (6) ◽  
pp. 2694-2701 ◽  
Author(s):  
Jae-Hyung Kim ◽  
Kang-Joon Park ◽  
Suk Jun Kim ◽  
Chong S. Yoon ◽  
Yang-Kook Sun

Lithium-ion batteries with high energy density, long cycle life, and appropriate safety levels are necessary to facilitate the penetration of electrified transportation systems into the automobile market.


JOM ◽  
2017 ◽  
Vol 69 (9) ◽  
pp. 1484-1496 ◽  
Author(s):  
Jianlin Li ◽  
Zhijia Du ◽  
Rose E. Ruther ◽  
Seong Jin AN ◽  
Lamuel Abraham David ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Sign in / Sign up

Export Citation Format

Share Document