MEASURING OF ELECTROCONDUCTIVE PIPE WALL THICKNESS USING EDDY-CURRENT METHOD IN PRESENCE OF LARGE GAP BETWEEN PIPE AND TRANSDUCER

2014 ◽  
pp. 14-18 ◽  
Author(s):  
E.V. Yakimov ◽  
A.E. Goldstein ◽  
V.F. Bulgakov ◽  
Yu.V. Alkhimov ◽  
V.Yu. Belyankov
2019 ◽  
Vol 970 ◽  
pp. 336-342
Author(s):  
Aleksandr E. Goldshtein ◽  
Vasily Y. Belyankov

The dependences of the surface eddy current probe added voltage at the interaction of the probe magnetic field with an aluminum pipe from the following main interference factors are determined: the pipe wall thickness, the gap between the probe and the surface of the pipe, the electrical conductivity of the material, the curvature of the pipe wall, the presence of areas with a smooth thickness change of the wedge character and a local spherical thinning, axis misalignment with respect to the pipe surface, the lateral misalignment of the probe axis. The problem is solved with the help of the finite element method (FEM). These data are consistent with the experimental results.


2020 ◽  
pp. 49-52
Author(s):  
R.A. Okulov ◽  
N.V. Semenova

The change in the intensity of the deformation of the pipe wall during profiling by drawing was studied. The dependence of the strain intensity on the wall thickness of the workpiece is obtained to predict the processing results in the production of shaped pipes with desired properties. Keywords drawing, profile pipe, wall thickness, strain rate. [email protected]


2013 ◽  
Vol 55 (7-8) ◽  
pp. 370-374 ◽  
Author(s):  
M. H. Nateq ◽  
S. Kahrobaee ◽  
M. Kashefi

2021 ◽  
pp. 100981
Author(s):  
Yanfei Liao ◽  
Jingjing Wang ◽  
Zhiwei Zeng ◽  
Junming Lin ◽  
Yonghong Dai

Author(s):  
A.G. Efimov ◽  
N.R. Kuzelev ◽  
E.V. Martyanov ◽  
B.M. Kanter ◽  
A.E. Shubochkin

The first publications describing the physical principles of the non-destructive remote field eddy current testing method appeared about 30 years ago. This method allows to significantly expand the field of application of eddy current testing. However, due to the lack of a theoretical justification, this method did not get widespread use around the world. Domestic publications in this area are completely absent, and the descriptions given in few foreign publications often contradict each other. There are no results of full-scale simulation using numerical methods in available domestic and foreign sources. The distinctive feature of this method under consideration is the ability of detecting defects on the external (with respect to the eddy current transducer) side of the tested object, which is impossible for the classical eddy current method due to the limited eddy current penetration depth. The basics of the method were considered, the distinctive features were presented, and the advantages and disadvantages of remote field eddy current testing of metals were pointed out. A numerical simulation with the subsequent analysis of the obtained results has been carried out, the transducer design for remote field eddy current testing is given. The influence of various factors on the change in the added voltage of the signal coil of the eddy current transducer in the presence of a defect in the external wall of the tube was considered. Expressions that determine the optimal ratio of the diameters of the transducer and the tested product were obtained. The values of the test parameters and the limiting wall thickness of the tested ferromagnetic product were determined.


Sign in / Sign up

Export Citation Format

Share Document