scholarly journals Experimental Determination of Enlarged Primary Parameters of a Three-Wire Power Transmission Line

Author(s):  
G. A. Bol'shanin ◽  
M. P. Plotnikov ◽  
M. A. Shevchenko

To determine the results of the transmission of electrical energy through the power line from the source to the consumer, it is necessary to have accurate information about the parameters of such line. Determining these parameters for operating lines with a minimum error is quite a laborious process. But if a researcher is interested only in voltages and currents at the end and at the beginning of a homogeneous section of a three-wire transmission line, then it is sufficient to use the theory of multipoles. In particular, the theory of eight-poles. The article presents the method of experimental determination of the longitudinal and transverse parameters of the studied transmission line. The study used the methods of natural experiment using an appropriate fleet of electrical devices, and methods of indirect measurement of the desired parameters. The experiment consists of six stages; on the basis of the obtained data, it becomes possible to determine the numerical values of the main parameters of the studied section of power transmission lines, with which it is possible to establish a quantitative relationship between the input and output characteristics of electrical energy. In addition, the described method, in principle, can be applied to the analysis of active eight-terminal networks of a similar design. This means that the proposed methodology can provide a comprehensive analysis of the studied object and will help to identify the parameters of an overhead power line at the construction stage or for its connection to the consumer. The article presents the experimental setup scheme, describes the experimental methods, and estimates the error of the calculation results.


2018 ◽  
Vol 12 (16) ◽  
pp. 3812-3819 ◽  
Author(s):  
Yufeng Guo ◽  
Runxin Chen ◽  
Jianguo Shi ◽  
Jie Wan ◽  
Hongliang Yi ◽  
...  

Author(s):  
M. I. Kazakevitch ◽  
Ye. V. Horokhov ◽  
M. S. Khorol'sky ◽  
S. V. Turbin

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document