scholarly journals A LSTM Approach for Secure Energy Efficient Computational Offloading in Mobile Edge Computing

Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 856-874
Author(s):  
S. Anoop ◽  
Dr.J. Amar Pratap Singh

Mobile technologies is evolving so rapidly in every aspect, utilizing every single resource in the form of applications which creates advancement in day to day life. This technological advancements overcomes the traditional computing methods which increases communication delay, energy consumption for mobile devices. In today’s world, Mobile Edge Computing is evolving as a scenario for improving in these limitations so as to provide better output to end users. This paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks done using the LSTM algorithm. A strategy for computation offloading based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling based on a reinforcement learning routing algorithm help to optimize the edge computing offloading model. Experimental results show that our proposed algorithm Intelligent Energy Efficient Offloading Algorithm (IEEOA), can efficiently decrease total task delay and energy consumption, and bring much security to the devices due to the firewall nature of LSTM.

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Muhammad Arif ◽  
F. Ajesh ◽  
Shermin Shamsudheen ◽  
Muhammad Shahzad

The use of application media, gamming, entertainment, and healthcare engineering has expanded as a result of the rapid growth of mobile technologies. This technology overcomes the traditional computing methods in terms of communication delay and energy consumption, thereby providing high reliability and bandwidth for devices. In today’s world, mobile edge computing is improving in various forms so as to provide better output and there is no room for simple computing architecture for MEC. So, this paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks is done using the LSTM algorithm, the strategy for computation offloading of mobile devices is based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling helps to optimize the edge computing offloading model. Experiments show that our proposed architecture, which consists of an LSTM-based offloading technique and routing (LSTMOTR) algorithm, can efficiently decrease total task delay with growing data and subtasks, reduce energy consumption, and bring much security to the devices due to the firewall nature of LSTM.


Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

AbstractWith the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 134742-134753 ◽  
Author(s):  
Shengli Pan ◽  
Zhiyong Zhang ◽  
Zongwang Zhang ◽  
Deze Zeng

Sign in / Sign up

Export Citation Format

Share Document