scholarly journals Investigasi Numerik Efek Kekasaran Permukaan (Adhesi) pada Kontak Gesek antara Karet Sbr-25 dengan Rigid Indenter

ROTASI ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 84
Author(s):  
Budi Setiyana

Dalam  berbagai  macam  perlakuan  material  yang  ada,  perlakuan material ketika menerima beban luar, baik beban berupa gaya, tekanan, ataupun regangan akan menunjukkan respon yang berbeda- beda, tergantung pada sifat  material tersebut. Material karet atau karet kompon (elastomer) sering dimodelkan sebagai material hyperelastic. Teori tentang model material hyperelastic telah dikembangkan oleh beberapa peneliti seperti teori Yeoh yang umumnya dipakai untuk karet kompon (elastomer) yang diisi dengan carbon black seperti pada Styrene Butadiene Rubber (SBR). Tulisan ini menyajikan investigasi numerik pada kontak gesek antara sebuah rigid spherical indenter dengan material SBR yang diisi 25% berat carbon black (SBR-25). Penelitian dilakukan berbasis Metoda Elemen Hingga dengan menggunakan software ABAQUS 6.14-5. Kontak gesek ini akan menghasilkan besar koefisien gesek yang secara umum terdiri dari dua komponen yaitu komponen adhesi (akibat kekasaran permukaan) dan komponen hysteresis (akibat deformasi). Kontak gesek antara indenter dengan permukaan material SBR-25 dibuat dengan variasi koefisien gesek adhesi sebesar 0, 0.15, 0.5 dan 1 yang nilainya diberikan sebagai data masukan. Hasil yang didapat berupa hubungan gaya reaksi, koefisien gesek hysterisis dan koefisien gesek total terhadap perpindahan geser indenter. Berdasarkan hasil simulasi ditunjukkan bahwa semakin besar kekasaran permukaan, akan menyebabkan munculnya nilai koefisien gesek total yang besar pula tetapi besarnya fluktuatif. Kejadian ini menunjukkan adanya fonemena kontak stick-slip antara indenter dengan permukaan karet.

2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

2012 ◽  
Vol 19 (01) ◽  
pp. 1250003
Author(s):  
JIAN CHEN ◽  
YONGZHONG JIN ◽  
JINGYU ZHANG ◽  
YAFENG WU ◽  
CHUNCAI MENG

Bound rubber in carbon black (CB) filled rubber (natural rubber (NR) and styrene–butadiene rubber (SBS)) was prepared by the solvent method. The nanomorphology of CB and rubber/CB soluble rubber was observed by atomic force microscope. The results show that high-structure CB DZ13 has a "grape cluster" structure which consists of many original particles with the grain size of about 30–50 nm. Graphitizing process of CB decreases the amount of bound rubber. The NR/DZ13 soluble rubber with island–rim structure has been obtained, where the islands are DZ13 particles and the rims around the islands are occupied by NR film. But when the graphitized DZ13 particles were used as fillers of rubber, we have only observed that some graphitized DZ13 particles were deposited on the surface of the globular-like NR molecular chains, instead of the spreading of NR molecular chains along the surface of DZ13 particles, indicating that graphitized DZ13 has lower chemical activity than ungraphitized DZ13. Especially, we have already observed an interesting unusual bound rubber phenomenon, the blocked "bracelet" structure with the diameter of about 600 nm in which CB particles were blocked in ring-shaped SBS monomer.


Author(s):  
Ruofan Liu ◽  
Erol Sancaktar

Payne and Mullins effects are widely observed in reinforced rubber materials. The mechanisms by which these two effects work are not fully understood. Several models have been proposed, including molecular slippage model, bond rupture model, and filler rupture model. In this study, two different compounds of styrene–butadiene rubber were prepared using carbon black and silica as reinforcement fillers, respectively, and subjected to cyclic fatigue process. Tensile, creep, and relaxation tests were performed on fatigued samples to assess the residual stress–strain behavior by comparing with the results from similar tests using pristine (no fatigue) samples. When the tensile stiffness behavior of fatigued specimens was evaluated, we noted that the stiffness versus strain behavior which exhibited a monotonic decreasing–increasing behavior with the pristine specimens changed to what we call “dual-stiffness” condition, where the specimens went through a first (low) turning point as with the pristine samples, but then dropped off of a peak to go through a second softening stage, similar to the first softening stage of the pristine material. We believe that such spiking (dual) stiffness behavior characterized by a “Peak” point represents a combination of both Payne and the Mullins effects active during fatigue loading. We conclude that molecular slippage and bond rupture are the main factors affecting the physical properties of carbon black-filled compounds, while breakage and recombination of the filler are the key mechanisms affecting the silica-filled compounds during the fatigue process.


Sign in / Sign up

Export Citation Format

Share Document