Styrene Butadiene Rubber/Epoxidized Natural Rubber (SBR/ENR50) Nanocomposites Containing Nanoclay and Carbon Black as Fillers for Application in Tire-Tread Compounds

2016 ◽  
Vol 55 (10) ◽  
pp. 969-983 ◽  
Author(s):  
Sima Ahmadi Shooli ◽  
Mitra Tavakoli
2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
R. Rajasekar ◽  
Gert Heinrich ◽  
Amit Das ◽  
Chapal Kumar Das

The significant factor that determines the improvement of properties in rubber by the incorporation of nanoclay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nanoclay will not contribute for the good dispersion of nanofiller in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nanoclay in the matrix polymer. Epoxidized natural rubber and organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay employed in this study is Cloisite 20A. The obtained nanocomposites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nanoclay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nanoclay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.


2014 ◽  
Vol 3 (2) ◽  
pp. 1-4
Author(s):  
Indra Surya ◽  
Siswarni MZ

By using a semi-efficient vulcanization system, the effect of Epoxidized Natural Rubber (ENR) as a compatibilizer in silica-filled Styrene Butadiene Rubber (SBR) compound was carried out. The ENR was incorporated into the silica-filled SBR compound at 5.0 and 10.0 phr. An investigation was carried out to examine the effect of ENR on cure characteristics and tensile properties of the silica-filled SBR compound. It was found that ENR gave enhanced cure rate to the silica-filled SBR compound. ENR also exhibited a higher torque difference, tensile modulus, and tensile strength up to 10.0 phr. The study of rubber - filler interaction proved that the addition of ENR to the silica-filled SBR system improved the rubber - filler interaction.


Sign in / Sign up

Export Citation Format

Share Document