Motion planning and decision-making for autonomous systems : from quadrotors to autonomous vehicles

Author(s):  
Wenchao Ding
Author(s):  
Xiaoyuan Zhu ◽  
Jian Chen ◽  
Yan Ma ◽  
Jianqiang Deng ◽  
Yuexuan Wang

Abstract In this paper, we propose an MPC-based motion planning algorithm, including a decision-making module, an obstacle-constraints generating module, and an MPC-based planning module. The designed decision module effectively distinguishes between structured and unstructured roads and processes them separately, so that the algorithm is more robust in different environments. Besides, the movement of obstacles is considered in the decision-making and obstacle constraints generating module. By processing obstacles with lateral and longitudinal speed separately, obstacle avoidance can be done in scenarios with moving obstacles, including moving obstacles crossing the road. Instead of treating the vehicle as a mass point, we explicitly consider the geometric constraints by modeling the vehicle as three intersecting circles when generating obstacle constraints. This ensures that the vehicle is collision-free in motion planning, especially when the vehicle turns. For non-convex obstacle constraints, we propose an algorithm that generates up to two alternative linear constraints to convexify the obstacle constraints for improving computational efficiency. In MPC, we consider the vehicle kino-dynamic constraints and two generated linear constraints. Therefore, the proposed method can achieve better real-time performance and can be applied to more complicated traffic scenarios with moving obstacles. Simulation results in three different scenarios show that motion planning can achieve satisfactory performance in both structured and unstructured roads with moving obstacles.


2021 ◽  
Author(s):  
Philipp Ringlage

The further technical development of automated driving functions could lead to fully autonomous vehicles without human drivers in public traffic. This process is inevitably linked to the question of civil liability in case of malfunctions of such vehicles. In particular, the opacity of the decision-making processes of autonomous systems resulting from the ability of self-learning leads to legal problems that increasingly provoke calls for innovative liability concepts. The author examines the question of whether such demands are justified or whether the problems caused by the technical development can be countered with conventional regulatory instruments in a manner that is appropriate and in the interests of the parties concerned.


Author(s):  
Kyle Hollins Wray ◽  
Stefan J. Witwicki ◽  
Shlomo Zilberstein

We present a general formal model called MODIA that can tackle a central challenge for autonomous vehicles (AVs), namely the ability to interact with an unspecified, large number of world entities. In MODIA, a collection of possible decision-problems (DPs), known a priori, are instantiated online and executed as decision-components (DCs), unknown a priori. To combine their individual action recommendations of the DCs into a single action, we propose the lexicographic executor action function (LEAF) mechanism. We analyze the complexity of MODIA and establish LEAF’s relation to regret minimization. Finally, we implement MODIA and LEAF using collections of partially observable Markov decision process (POMDP) DPs, and use them for complex AV intersection decision-making. We evaluate the approach in six scenarios within an industry-standard vehicle simulator, and present its use on an AV prototype.


2019 ◽  
Author(s):  
Weichao Wang ◽  
Quang A Nguyen ◽  
Paul Wai Hing Chung ◽  
Qinggang Meng

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1523
Author(s):  
Nikita Smirnov ◽  
Yuzhou Liu ◽  
Aso Validi ◽  
Walter Morales-Alvarez ◽  
Cristina Olaverri-Monreal

Autonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green.


Sign in / Sign up

Export Citation Format

Share Document