Stability Enhancement of Transfer Function by Ant Colony Optimization and Particle Swarm Optimization Algorithm

Author(s):  
Chaman Yadav ◽  
Prabha Singh ◽  
Jaya Mishra ◽  
Kushal Tiwari ◽  
Shashank Singh

This paper presents the concepts of three evolutionary algorithms i.e, ant colony optimization and particle swarm optimization algorithm. An evolutionary algorithm copies the way how evolution occurs in the nature. There are various types of evolutionary algorithms. This paper focuses on ACO and PSO algorithms. ACO provides solution to various optimization problems. It follows the principle of survival of the fittest. Various problems such as knapsack problem, TSP(travelling salesman problem) can be solved using genetic algorithm. Ant colony optimization is a heuristic algorithm which follows the behaviour of ants i.e., the way ants seek food in their environment by starting from their nest. Particle swarm optimization algorithm (PSO) is also an optimization algorithm which also uses a method of searching using some heuristics.

2010 ◽  
Vol 108-111 ◽  
pp. 392-397
Author(s):  
Peng Cheng Wei ◽  
Xi Shi

Based on particle swarm optimization algorithm, this paper presents a grid scheduling optimization algorithm combing the advantages of Ant Colony optimization algorithm. The algorithm processes task scheduling through particle swarm optimization algorithm to get a group of relatively optimal solutions, and then conducts small-area local search with Ant Colony optimization algorithm. Theoretical analysis and results of the simulation experiments show that this scheduling algorithm effectively achieves load balancing of resources with comprehensive advantages in time efficiency and solution accuracy compared to the traditional Ant Colony optimization algorithm and particle swarm optimizationalgorithm, and can be applied to task scheduling in grid computing.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Author(s):  
Goran Klepac

Developed neural networks as an output could have numerous potential outputs caused by numerous combinations of input values. When we are in position to find optimal combination of input values for achieving specific output value within neural network model it is not a trivial task. This request comes from profiling purposes if, for example, neural network gives information of specific profile regarding input or recommendation system realized by neural networks, etc. Utilizing evolutionary algorithms like particle swarm optimization algorithm, which will be illustrated in this chapter, can solve these problems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feng Qian ◽  
Mohammad Reza Mahmoudi ◽  
Hamïd Parvïn ◽  
Kim-Hung Pho ◽  
Bui Anh Tuan

Conventional optimization methods are not efficient enough to solve many of the naturally complicated optimization problems. Thus, inspired by nature, metaheuristic algorithms can be utilized as a new kind of problem solvers in solution to these types of optimization problems. In this paper, an optimization algorithm is proposed which is capable of finding the expected quality of different locations and also tuning its exploration-exploitation dilemma to the location of an individual. A novel particle swarm optimization algorithm is presented which implements the conditioning learning behavior so that the particles are led to perform a natural conditioning behavior on an unconditioned motive. In the problem space, particles are classified into several categories so that if a particle lies within a low diversity category, it would have a tendency to move towards its best personal experience. But, if the particle’s category is with high diversity, it would have the tendency to move towards the global optimum of that category. The idea of the birds’ sensitivity to its flying space is also utilized to increase the particles’ speed in undesired spaces in order to leave those spaces as soon as possible. However, in desirable spaces, the particles’ velocity is reduced to provide a situation in which the particles have more time to explore their environment. In the proposed algorithm, the birds’ instinctive behavior is implemented to construct an initial population randomly or chaotically. Experiments provided to compare the proposed algorithm with the state-of-the-art methods show that our optimization algorithm is one of the most efficient and appropriate ones to solve the static optimization problems.


Sign in / Sign up

Export Citation Format

Share Document