Michel Foucault’s Heterotopic Space Boundary Study - Focused on the work of Peter Zumtor -

2021 ◽  
Vol 30 (2) ◽  
pp. 29-38
Author(s):  
Ho-hyeon Cha ◽  
Kail-Chun Kim ◽  
Ji-Eun Kim
Keyword(s):  
2018 ◽  
Vol 232 ◽  
pp. 03057
Author(s):  
Wei Wang ◽  
Yong Xu

Aiming at the requirements of dual robot collaborative operation, a dual robot cooperation system model is established in SolidWorks2012 software to study the dual robot cooperation space. The D-H parameters are established, and the kinematics positive solution equation is obtained. The dual robot cooperative kinematics model is given. Based on the Monte Carlo method, the workspace of the dual robot is solved. The extreme value theory method is used to analyze and calculate, so as to extract the precise boundary contour of the common area of the dual robot workspace, and the collaborative space boundary surface and limit position of the dual robot are determined. The optimal coordinated working space of the dual robot end effector is obtained, which lays a theoretical foundation for the coordinated trajectory planning of the dual robot.


2019 ◽  
Vol 879 ◽  
pp. 808-833 ◽  
Author(s):  
B. J. Walker ◽  
K. Ishimoto ◽  
H. Gadêlha ◽  
E. A. Gaffney

We present a generalisation of efficient numerical frameworks for modelling fluid–filament interactions via the discretisation of a recently developed, non-local integral equation formulation to incorporate regularised Stokeslets with half-space boundary conditions, as motivated by the importance of confining geometries in many applications. We proceed to utilise this framework to examine the drag on slender inextensible filaments moving near a boundary, firstly with a relatively simple example, evaluating the accuracy of resistive force theories near boundaries using regularised Stokeslet segments. This highlights that resistive force theories do not accurately quantify filament dynamics in a range of circumstances, even with analytical corrections for the boundary. However, there is the notable and important exception of movement in a plane parallel to the boundary, where accuracy is maintained. In particular, this justifies the judicious use of resistive force theories in examining the mechanics of filaments and monoflagellate microswimmers with planar flagellar patterns moving parallel to boundaries. We proceed to apply the numerical framework developed here to consider how filament elastohydrodynamics can impact drag near a boundary, analysing in detail the complex responses of a passive cantilevered filament to an oscillatory flow. In particular, we document the emergence of an asymmetric periodic beating in passive filaments in particular parameter regimes, which are remarkably similar to the power and reverse strokes exhibited by motile$9+2$cilia. Furthermore, these changes in the morphology of the filament beating, arising from the fluid–structure interactions, also induce a significant increase in the hydrodynamic drag of the filament.


1975 ◽  
Vol 97 (4) ◽  
pp. 408-416 ◽  
Author(s):  
J. K. Hedrick ◽  
R. J. Ravera ◽  
J. R. Anderes

In this paper the ride quality of a vehicle traversing an elevated guideway is related directly to guideway construction tolerances and design parameters. Moreover, the construction tolerances are modeled in terms familiar to a guideway contractor. The tolerances modeled for an elevated, two-span semicontinuous, concrete guideway are: surface finish, camber deviations, pier survey errors, and pier settlement. The major design parameters relating to live-load deflection, stiffness (material and cross-section), and pier spacing are included. A general technique is presented for relating these tolerances to vehicle ride quality by means of a digital computer simulation. Various ride quality criteria are considered, including rms acceleration, acceleration spectral density, acceleration frequency decomposition, and a deterministic state space boundary. Numerical results are presented for a particular vehicle-guideway configuration and as such are valid only for the system considered. It is shown that for this system, equivalent ride quality can be maintained while adjusting the various construction tolerances. This trade-off capability allows the contractor to choose the least costly combination of tolerance parameters.


2016 ◽  
Vol 30 (11) ◽  
pp. 1650186 ◽  
Author(s):  
Cumali Sabah

The design and characterization of perfect metamaterial absorbers (MAs) based on simple configurations including square- and triangle-shapes, which operate in X-band frequency region are numerically and experimentally investigated. The proposed MAs provide perfect absorption with the polarization angle independency. In X-band waveguide, the absorption rates are 99.69% and 99.97% at the resonance frequencies of 10.57 GHz and 10.93 GHz for the square- and triangle-shaped MAs, respectively. In addition, the same configurations are numerically tested under free space boundary conditions to compare and discuss the obtained results. The suggested MAs enable myriad potential application areas for security and stealth technologies in X-band including wireless communication.


Sign in / Sign up

Export Citation Format

Share Document