Feature prioritisation on big genomic data for analysing gene-gene interactions

Author(s):  
Paul J. Kennedy ◽  
Daniel R. Catchpoole ◽  
Siamak Tafavogh ◽  
Bronwyn L. Harvey ◽  
Ahmad A. Aloqaily
Author(s):  
Chixiang Chen ◽  
Libo Jiang ◽  
Guifang Fu ◽  
Ming Wang ◽  
Yaqun Wang ◽  
...  

Abstract Gene regulatory networks (GRNs) have been widely used as a fundamental tool to reveal the genomic mechanisms that underlie the individual’s response to environmental and developmental cues. Standard approaches infer GRNs as holistic graphs of gene co-expression, but such graphs cannot quantify how gene–gene interactions vary among individuals and how they alter structurally across spatiotemporal gradients. Here, we develop a general framework for inferring informative, dynamic, omnidirectional, and personalized networks (idopNetworks) from routine transcriptional experiments. This framework is constructed by a system of quasi-dynamic ordinary differential equations (qdODEs) derived from the combination of ecological and evolutionary theories. We reconstruct idopNetworks using genomic data from a surgical experiment and illustrate how network structure is associated with surgical response to infrainguinal vein bypass grafting and the outcome of grafting. idopNetworks may shed light on genotype–phenotype relationships and provide valuable information for personalized medicine.


Author(s):  
Ahmad A. Aloqaily ◽  
Siamak Tafavogh ◽  
Bronwyn L. Harvey ◽  
Daniel R. Catchpoole ◽  
Paul J. Kennedy

2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


2005 ◽  
Vol 38 (05) ◽  
Author(s):  
D Salyakina ◽  
EB Binder ◽  
M Ising ◽  
M Uhr ◽  
S Lucae ◽  
...  

Author(s):  
Pawan Kumar Jayaswal ◽  
Asheesh Shanker ◽  
Nagendra Kumar Singh

Actin and tubulin are cytoskeleton proteins, which are important components of the celland are conserved across species. Despite their crucial significance in cell motility and cell division the distribution and phylogeny of actin and tubulin genes across taxa is poorly understood. Here we used publicly available genomic data of 49 model species of plants, animals, fungi and Protista for further understanding the distribution of these genes among diverse eukaryotic species using rice as reference. The highest numbers of rice actin and tubulin gene homologs were present in plants followed by animals, fungi and Protista species, whereas ten actin and nine tubulin genes were conserved in all 49 species. Phylogenetic analysis of 19 actin and 18 tubulin genes clustered them into four major groups each. One each of the actin and tubulin gene clusters was conserved across eukaryotic species. Species trees based on the conserved actin and tubulin genes showed evolutionary relationship of 49 different taxa clustered into plants, animals, fungi and Protista. This study provides a phylogenetic insight into the evolution of actin and tubulin genes in diverse eukaryotic species.


Sign in / Sign up

Export Citation Format

Share Document