Information hiding using LSB replacement technique and adaptive image fusion

Author(s):  
Lakshmi Priya S ◽  
K. Namitha ◽  
Natha Manoj Kumar ◽  
Neela Niranjani Vengateshwaran
Author(s):  
Lakshmi Priya S ◽  
K. Namitha ◽  
Natha Manoj Kumar ◽  
Neela Niranjani Vengateshwaran

Author(s):  
Subhrajit Sinha Roy ◽  
Abhishek Basu ◽  
Avik Chattopadhyay

In this chapter, hardware implementation of an LSB replacement-based digital image watermarking algorithm is introduced. The proposed scheme is developed in spatial domain. In this watermarking process, data or watermark is implanted into the cover image pixels through an adaptive last significant bit (LSB) replacement technique. The real-time execution of the watermarking logic is developed here using reversible logic. Utilization of reversible logic reduces the power dissipation by means of no information loss. The lesser power dissipation enables a faster operation as well as holds up Moore's law. The experimental results confirm that the proposed scheme offers high imperceptibility with a justified robustness.


Author(s):  
Subhrajit Sinha Roy ◽  
Abhishek Basu ◽  
Avik Chattopadhyay

In this chapter, hardware implementation of an LSB replacement-based digital image watermarking algorithm is introduced. The proposed scheme is developed in spatial domain. In this watermarking process, data or watermark is implanted into the cover image pixels through an adaptive last significant bit (LSB) replacement technique. The real-time execution of the watermarking logic is developed here using reversible logic. Utilization of reversible logic reduces the power dissipation by means of no information loss. The lesser power dissipation enables a faster operation as well as holds up Moore's law. The experimental results confirm that the proposed scheme offers high imperceptibility with a justified robustness.


Author(s):  
Naofumi Aoki

Steganography can transmit supplementary data without changing conventional data formats. The concept of high value-added communications is drawn from this advantage of steganography. As a specific application of the concept, this chapter describes two topics about the enhancement of the speech quality in telephony communications by steganography. A packet loss concealment technique and a band extension technique are explained. These techniques employ steganography for transmitting side information for improving the performance of signal processing. In addition, this chapter describes an efficient steganography technique devised for G.711, the most common codec for telephony speech standardized by ITU-T. The proposed technique, named selective LSB replacement technique, outperforms the conventional one in order to decrease the degradation caused by embedding side information into speech data by steganography.


Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


2005 ◽  
Vol 173 (4S) ◽  
pp. 414-414
Author(s):  
Frank G. Fuechsel ◽  
Agostino Mattei ◽  
Sebastian Warncke ◽  
Christian Baermann ◽  
Ernst Peter Ritter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document