Light-tree reconfiguration without flow interruption in sparse wavelength converter network

Author(s):  
Amanvon Ferdinand Atta ◽  
Bernard Cousin ◽  
Joël Christian Adépo ◽  
Souleymane Oumtanaga
Author(s):  
Joël Christian Adépo ◽  
Souleymane Oumtanaga ◽  
Bernard Cousin ◽  
Amanvon Ferdinand ATTA

Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 211
Author(s):  
Amanvon Ferdinand Atta ◽  
Joël Christian Adépo ◽  
Bernard Cousin ◽  
Souleymane Oumtanaga

Network reconfiguration is an important mechanism for network operators to optimize network performance and optical flow transfer. It concerns unicast and multicast connections. Multicast connections are required to meet the bandwidth requirements of multicast applications, such as Internet Protocol-based TeleVision (IPTV), distance learning, and telemedicine. In optical networks, a multicast connection is made possible by the creation of an optical tree-shaped path called a light-tree. The problem of light-tree pair reconfiguration is addressed in this study. Given an initial light-tree used to transfer an optical flow and a final light-tree that is computed by the network operator to optimize network performance, the goal is to migrate the optical flow from the initial light-tree to the final light-tree without flow interruption. Flow interruption is not desirable for network operators because it forces them to pay financial penalties to their customers. To solve this problem, existing methods use a branch approach that is inefficient if some network nodes do not have wavelength conversion capability. Therefore, we proposed in this study a sub-tree-based method. This approach selects and configures sub-tree pairs from the light-tree pair (initial light-tree, final light-tree) to be reconfigured. Then, we produce a sequence of configurations. The performance study confirms that our method is efficient in solving the problem of light-tree pair reconfiguration because our method does not cause flow interruption.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Yassine Khlifi ◽  
Majid Alotaibi

AbstractOptical label switching is introduced for ensuring fast data transfer, quality of service (QoS) support, and better resource management. However, the important issue is how to optimize resource usage and satisfy traffic constraints for improving network performance and design. This paper proposes a dynamic approach that optimizes the resource in terms of link capacity and FDL (fiber delay line) buffering as well as a wavelength converter. The proposed approach decreases the resources usage and guarantees QoS support for various traffic demands. The optimization strategy consists of two stages: path building and traffic management. The path building assures logical topology making using the cumulative cost of available resource and traffic requirements including unicast and multicast. The traffic management solves the resource formulation problem during the traffic transfer by guaranteeing the required loss and blocking delay. Simulation work is conducted for validating the proposed approach and evaluating its performances and effectiveness. Simulation results show that our proposal minimizes effectively the use of link capacity of lightpath and light-tree. Moreover, our approach optimizes the use of buffering capacity and wavelength converter and guarantees QoS support according to traffic requirements.


2021 ◽  
pp. 117297
Author(s):  
Annesh Borthakur ◽  
Brian K. Cranmer ◽  
Gregory P. Dooley ◽  
Jens Blotevogel ◽  
Shaily Mahendra ◽  
...  

2021 ◽  
Vol 54 (4) ◽  
pp. 1934-1942
Author(s):  
Yuki Kawano ◽  
Yoshinori Ito ◽  
Shunichiro Ito ◽  
Kazuo Tanaka ◽  
Yoshiki Chujo

Sign in / Sign up

Export Citation Format

Share Document